• Title/Summary/Keyword: Cooling Condition

Search Result 1,247, Processing Time 0.031 seconds

Part-Load Performance Test of a Screw Chiller with Economizer using R22 and R407C (이코노마이저를 채용한 스크류 냉동기에서 R22와 R407C의 부분부하 성능실험)

  • 장영수;이용철;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.902-909
    • /
    • 2003
  • Screw compressor type chillers are widely used in refrigeration for capacity over 30 RT. In general, chillers operate under part-load conditions. Therefore, information on characteristics at part-load is very important in view of chiller performance and energy economy. In this study, performance tests of part-load and economizer system using R22 and R407C have been performed for various secondary fluid temperatures. Adoption of an economizer system increased the cooling capacity and improved COP except for lower part-load condition when injection volume ratio is 1.01. For the same cooling capacity condition at part-load, COP of both non-economizer and economizer system showed similar values.

A study on CAE and injection molding of automotive thick-walled light guide with micro-optical patterns (마이크로 광학 패턴이 있는 차량용 후육 라이트 가이드의 CAE 및 사출성형에 관한 기초연구)

  • Dong-Won Lee;Jong-Su Kim;Hyeon-Hwa Lee;Sung-Hee Lee
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.8-14
    • /
    • 2023
  • In this study, basic research was conducted on manufacturing technology of thick-walled light guide a component that controls the light source of automobile lamps. As a preliminary study for manufacturing the final injection molded parts, a model for analyzing the influence of micro patterns on light guides is presented. The optical characteristics of the light guide were analyzed according to the change of the curvature radius of the micro-optical pattern, and the injection molding characteristics of the light guide according to the change of injection molding conditions were analytically evaluated. It was confirmed that the luminance uniformity improves as the R value decreases for changes in the micro-pattern R value, but it was confirmed that there are technical limitations in actual injection mold core processing and high-replication injection molding. Injection molding analysis showed that cooling channel design is very important compared to general injection molding due to thick-wall characteristics and thickness variation. It was also confirmed that the cooling channel has a great influence on the cycle time and birefringence result due to residual stress. As a result of analyzing the influence of filling time, holding condition, and cooling on shrinkage, it was found that the cooling water temperature has a significant effect on the shrinkage of ultra-fine light guide parts, and the holding condition also has a significant effect.

Analysis of restrained steel beams subjected to heating and cooling Part I: Theory

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.

Study on Heat Transfer and Pressure Drop Characteristics of Internal Heat Exchanger for $CO_2$ Heat Pump under Cooling Condition ($CO_2$ 열펌프용 내부 열교환기의 냉방조건에서 열전달 및 압력 강하 특성에 대한 연구)

  • Kim, Dae-Hoon;Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.8
    • /
    • pp.517-525
    • /
    • 2008
  • In order to study the heat transfer and pressure drop of an internal heat exchanger for $CO_2$ heat pump under cooling condition, the experiment and numerical analysis were performed. Four kinds of internal heat exchangers with a coaxial tube type and a micro-channel tube type were used. The experimental apparatus consisted of a test section, a power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. The section-by-section method and Hardy-Cross method were used for the numerical analysis. The effects of the internal heat exchanger refrigerant flow rate, the length of the internal heat exchanger, the operating condition of the gas-cooler, the evaporator and the type of the internal heat exchangers were investigated. With increasing of the flow rate, the heat transfer rate increased about 25%. The heat transfer rate of the micro-channel tube type was higher about 100% than that of the coaxial tube type. With increasing of the length of the internal heat exchanger, the heat transfer rate increased about $20{\sim}50%$. The pressure drop of the low-side tube was larger compared with that of the high-side tube.

Present Condition of Indoor Thermal and Air Environment by Cooling in School Classrooms (학교교실의 냉방시 실내열.공기환경 실태)

  • Choi, Yoon-Jung;Jeong, Youn-Hong;Lee, Seon-A;Kim, Hye-Kyeong;Hwang, Jin-A
    • Journal of the Korean housing association
    • /
    • v.18 no.4
    • /
    • pp.49-58
    • /
    • 2007
  • The purpose of this study were to make clear the present condition of indoor thermal and air environment by cooling in school classrooms and to analyze the relation of the living conditions with indoor environment. The measurements on physical elements and observations on living conditions were carried out in 6 classrooms of 3 middle or high schools. Measuring elements were indoor temperature, relative humidity, PM10 and $CO_2$ concentration. As results, the averages of indoor temperature each classrooms were $24.9{\sim}26.6^{\circ}C$. Most of classrooms were lower than the Maintenance standard $(26{\sim}28^{\circ}C)$ of School Health Law. The means of relative humidity were $51.3{\sim}72%$, all classrooms were ranged within the standard $(30{\sim}80%)$. The means of PM10 concentration were $3.5{\sim}23.1{\mu}g/m^3$, all classrooms were kept within the standard $(100{\mu}g/m^3)$. The means of $CO_2$ concentration were $1218.7{\sim}4705.4ppm$, all classrooms were exceed the standard (1,000ppm). The results of analysis on relations of living conditions with the physical elements are as follow; the air conditioner set of temperature, windows and doors opening elapsed time, the number of students in classrooms and activities of students had certain effect on indoor environment.

The Characteristics of Air Temperature Distribution by Land-use Type -A case study of around Automatic Weather Station in Seoul- (토지이용 유형에 따른 기온 특성 -서울시 자동기상관측지점 주변을 사례로-)

  • Kwon, Young-Ah;Lee, Hyoun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.281-290
    • /
    • 2003
  • The influence of land-use type on surrounding temperature was studied the relationships between land-use types and the air condition analyzing AWS (Automatic Weather Station) data of Seoul from KMA (Korea Meteorological Administration). The distribution of air temperature by land-use type has been influenced by the different heating and cooling rates. The difference of heating rates depending on the land-use type was largest at 2~3hours after sunrise and the difference of cooling rates was largest from 2hours before sunset to 2hours after sunset with its maximum at sunset. The difference of cooling rates is greatest in a clear and calm weather situation and the large difference in cooling rates between the green areas and built-up area is up to $1.5^{\circ}C/h$. By season, the difference of cooling rates is largest in fall and in turn spring, winter and summer. In a cloudy or rainy day, the difference in heating and cooling rates on land-use type is not distinct but the tendency is similar to a clear day. In all seasons, the rate of difference occurrence of the daily range of temperature between the green areas and built-up area was large, especially fall. In a fall with a clear and calm day, the magnitude of the daily range of temperature between the green areas and built-up area was largest.

A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel (환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF

Effect of Night Interruption with Mist and Shade Cooling Systems on Subsequent Growth and Flowering of Cymbidium 'Red Fire' and 'Yokihi'

  • Kim, Yoon Jin;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.753-761
    • /
    • 2014
  • Growth and flowering of Cymbidium 'Red Fire' and 'Yokihi' plants were examined in a greenhouse with cooling systems in summer, and with night interruption (NI) lighting in winter as a forcing culture system. The greenhouse was divided into two sections with separate cooling controls during the summer season. One section was cooled by a mist system (mist), while the other section was cooled by a shade screen (shade). During the winter, the greenhouse was redivided into three sections within each cooling system. Plants were grown with NI either at a low light intensity of $3-7{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$(LNI) or a high l ight intensity of $120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$(HNI) u sing h igh-pressure sodium l amps during the 22:00-02:00 HR. The control plants were grown under 9 h short-day condition. NI for 16 weeks and cooling for 9 weeks were employed twice during the 2 years of the experimental period. The air temperature was approximately $2^{\circ}C$ lower in the mist than in the shade and the relative humidity was 80 ${\pm}5%$ in the mist compared to $55{\pm}5%$ in the shade. The daily light integral in the mist section was 48% higher than in the shade section. The time from initial planting to flowering pseudobulb emergence decreased with both LNI and HNI for both cultivars, regardless of the cooling treatments. Under NI conditions, however, between 60% and 1 00% of plants of both cultivars flowered in the mist, whereas no or 20% of 'Red Fire' or 'Yokihi' plants, respectively, flowered in the shade treatment over 2 years. Plants grown under the mist had bigger pseudobulbs than those grown in the shade under both NI treatments. These results show that commercial use of NI in winter and a mist cooling system in summer would decrease crop production time to 2 years and increase profits in Cymbidium forcing culture.

Numerical Study on Two-phase Natural Circulation Flow by External Reactor Vessel Cooling of iPOWER (혁신형 안전경수로의 원자로용기 외벽냉각 시 2상 자연순환 유동에 대한 수치해석적 연구)

  • Park, Yeon-Ha;Hwang, Do Hyun;Lee, Yeon-Gun
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.103-110
    • /
    • 2019
  • The domestic innovative power reactor named iPOWER will employ the passive molten corium cooling system(PMCCS) to cool down and stabilize the core melt in the severe accident. The final design concept of the PMCCS is yet to be determined, but the in-vessel retention through external reactor vessel cooling has been also considered as a viable strategy to cope with the severe accident. In this study, the two-phase natural circulation flow established between the reactor vessel and the insulation was simulated using a thermal-hydraulic system code, MARS-KS. The flow path of cooling water was modeled with one-dimensional nodes, and the boundary condition of the heat load from the molten core was defined to estimate the naturally-driven flow rate. The evolution of major thermal-hydraulic parameters were also evaluated, including the temperature and the level of cooling water, the void fraction around the lower head of the reactor vessel, and the heat transfer mode on its external surface.

Applicability of Air Cooling Heat-treatment for a Duplex Stainless Steel Casting (2상 스테인레스 주강의 공냉 열처리 적용 가능성)

  • Kim, Bong-Whan;Yang, Sik;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2006
  • The substitution of cooling method from water quenching to air cooling after solution heat treatment was aimed for the development of a convenient and economical heat treatment process of duplex stainless steels without deterioration of mechanical and corrosion resistant properties for the industry. In order to achieve this goal, the mechanical properties and corrosion properties of a ASTM A890-4A duplex stainless steel were systematically investigated as functions of casting condition and cooling method after solution heat treatment. A 3-stepped sand mold and a permanent Y-block mold were used to check the effects of solidification structure and cooling rate after solution heat treatment. The microstructural characteristics such as the ferrite/austenite phase ratio and the precipitation behavior of ${\sigma}$ phase and carbides were investigated by combined analysis of OM and SEM-EDX with an aid of TTT diagram. Hardness and tension test were performed to evaluate the mechanical properties. Impact property at $-40^{\circ}C$ and corrosion resistance were also examined to check the possibility of the industrial application of this basic study. Throughout this investigation, air-cooling method was proved to effectively substitute for water-quenching process after the solution heat treatment, when the duplex stainless steel was sand mold cast with a thickness below 15 mm or permanent mold cast with a thickness below 20 mm.