• Title/Summary/Keyword: Cooling Breakage

Search Result 9, Processing Time 0.029 seconds

Theoretical Heat Flow Analysis and Vibration Characteristics During Transportation of PCS(Power Conversion System) for Reliability (전력변환장치 캐비넷에서의 내부발열 개선을 위한 열유동 분석 및 유통안전성 향상을 위한 진동특성 분석)

  • Joo, Minjung;Suh, Sang Uk;Oh, Jae Young;Jung, Hyun-Mo;Park, Jong-Min
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • PCS needs to freely switch AC and DC to connect the battery, external AC loads and renewable energy in both directions for energy efficiency. Whenever converting happens, power loss inevitably occurs. Minimization of the power loss to save electricity and convert it for usage is a very critical function in PCS. PCS plays an important role in the ESS(Energy Storage System) but the importance of stabilizing semiconductors on PCB(Printed Circuit Board) should be empathized with a risk of failure such as a fire explosion. In this study, the temperature variation inside PCS was reviewed by cooling fan on top of PCS, and the vibration characteristics of PCS were analyzed during truck transportation for reliability of the product. In most cases, a cooling fan is mounted to control the inner temperature at the upper part of the PCS and components generating the heat placed on the internal aluminum cooling plate to apply the primary cooling and the secondary cooling system with inlet fans for the external air. Results of CFD showed slightly lack of circulating capacity but simulated temperatures were durable for components. The resonance points of PCS were various due to the complexity of components. Although they were less than 40 Hz which mostly occurs breakage, it was analyzed that the vibration displacement in the resonance frequency band was very insufficient. As a result of random-vibration simulation, the lower part was analyzed as the stress-concentrated point but no breakage was shown. The steel sheet could be stable for now, but for long-term domestic transportation, structural coupling may occur due to accumulation of fatigue strength. After the test completed, output voltage of the product had lost so that extra packaging such as bubble wrap should be considered.

Estimation of Die Service Life for Die Cooling Method in Hot Forging (금형냉각법에 따른 열간 단조 금형의 수명 평가)

  • 김병민;김동환
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.408-413
    • /
    • 2003
  • Dies may have to be replaced for a number of reasons, such as changes in dimensions due to die wear or plastic deformation, deterioration of the surface finish, break down of lubrication and cracking or breakage. In this paper, die cooling methods have been suggested to improve die service life considering die wear and plastic deformation in hot forging process. The yield strength of die decreases at higher temperatures and is dependent on hardness. Also, to evaluate die life due to wear, modified Archard's wear model has been proposed by considering the thermal softening of die expressed in terms of the main tempering curve. It was found that the use of die with cooling hole was more effective than that of direct cooling method to increase the die service life for spindle component.

Computational Thermo-Fluid Analysis for the Effects of Helium Injection Methods on Glass Fiber Cooling Process in an Optical Fiber Manufacturing System (광섬유 냉각장치의 헬륨 주입기 설계를 위한 전산열유동해석)

  • Park, Shin;Kim, Kyoungjin;Kim, Dongjoo;Park, Junyoung;Kwak, Ho Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.124-130
    • /
    • 2014
  • In a mass manufacturing system of optical fibers, the sufficient cooling of glass fibers freshly drawn from a draw furnace is essential, asinadequately cooled glass fibers can lead to poor resin coating on the fiber surface and possibly fiber breakage during the process. In order to improve fiber cooling at a high drawing speed, it is common to use a helium injection into a glass fiber cooling unit in spite of the high cost of the helium supply. The present numerical analysis carried out three-dimensional thermo-fluid computations of the cooling gas flow and heat transfer on moving glass fiber to determine the cooling performance of glass fiber cooling depending on the method of helium injection. The results showed that afront injection of helium is most effective compared to a uniform or rear injection for reducing air entrainment into the unit and thus cooling the glass fibers at a high fiber drawing speed. However, above a certain amount of injected helium, there was no more increase of the cooling effect regardless of the helium injection method.

Experimental Study on Interaction of Water Sprayed Curtain on Hot Surface of a Window Glass and its Effects on Glass Surface Temperature in Room Fires (구획화재 시 국부복사열에 노출된 유리면의 수막접촉에 따른 급냉파열특성 관한 실험적 연구)

  • 박형주;지남용
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.124-130
    • /
    • 2003
  • This research focuses on analysis of a interaction fracture of various glasses due to contact of water sprayed curtain on hot glass surface with high temperature produced from convective heat source near glass wall. A large scaled experimental test was done in order to find the range of the glass surface temperature to be able to cause the breakage of the glasses when water droplets reach on the hot surface. This paper shows the allowable temperature of the glass surface for prevention of the cooling down breakage before water curtain droplets contact the surface. Allowable Temperature if $250^{\circ}C$ for the tempered glass but general glass is very relatively low. Therefore if the water curtain spray system was adequately activated by a thermal detector installed below ceiling adjacent glass wall with water curtain nozzle system, all hot glass would not break out by cooling water droplet's contact on the hot surface due to convective heat released by adjacent fire source near the glass wall.

The Utilization of MPCM Slurry for a Cooling System

  • Lee Hyo-Jin;Lee Jae-Goo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.175-183
    • /
    • 2005
  • The present study has been conducted for manufacturing MPCM (microencapsulated phase change material) slurry with in-situ polymerization and proving their applicabilities for cooling system. The tetradecane as a core material of MPCM is coated with melamine. The produced capsules are observed by the optical microscope and SEM for superficial shapes and analysed their properties by DSC and particle size distribution by FA particle analyzer. It is found that narrow size distribution in 1 to $10{\mu}m$ is resulted in $5{\mu}m$ of average diameter and $9^{\circ}C$ melting temperature. The durability of MPCM capsules is tested with various types of pumps such as centrifugal, peristaltic, and mono. For the centrifugal and peristaltic pumps the breakage fraction of the capsules is resulted within $6\%$ during 10,000 cycles, while the mono is over $8\%$. The cooling system, which has adopted MPCM slurry as a medium for transporting cold thermal energy, is designed to investigate the performance of newly developed coolant. The discharging times of cold energy in circulating 10 and $20wt\%$ MPCM slurry are lasted to 105 and 285 minutes, respectively.

Improvement of STS316L Milling Characteristics According to Coolant Spray Position (절삭유 분사위치에 따른 STS316L의 밀링가공 특성 개선)

  • Kim, Su Hwan;Park, Min Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.427-433
    • /
    • 2017
  • In the case of high-strength or low thermal conductivity material milling, tool breakage occurs easily because of the high friction temperature. Therefore, the effectiveness of the coolant supply is very important for proper tool cooling. As the manually adjustable joint mechanism nozzle is generally used for coolant supply, the cooling efficiency is very low. It also has a bad influence on the workspace environment because of coolant scattering. In this study, the milling characteristics of STS316L were investigated according to the coolant spray position based on the automatic adjustable system. Tool wear and surface roughness were measured according to the coolant spray position. Through these experiments, the effectiveness of the fabricated system was explained.

A Study on Optimization of Vacuum Glazing Encapsulating Process using Frit inside a Vacuum Chamber (진공챔버 내 프리트 이용 진공유리 봉지공정 최적화에 관한 연구)

  • Park, Sang Jun;Lee, Young Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.567-572
    • /
    • 2013
  • In houses that use heating and cooling system, most of heat loss occurs through the windows, so that low-E glass, double-layered glass, and vacuum glazing are used to minimize the heat loss. In this paper, an encapsulating process that is a final process in manufacturing the vacuum glazing has been studied, and bonding in a vacuum chamber rather than atmospheric bonding was considered. For the efficiency of the encapsulating process, frit-melting temperature and bonding time were optimized with heater temperature, and the glass preheating temperature was optimized to prevent glass breakage due to thermal stress. Thus the vacuum glass was successfully manufactured based on these results and heat transmission coefficient measured was about $5.7W/m^2K$ which indicates that the internal pressure of the vacuum glazing is $10^{-2}$ torr.

The Implemention of RTD-l000A based on ARM Microcontroller (ARM 마이크로컨트롤러 기반 RTD-1000A의 구현)

  • Kim, Min-Ho;Hong, In-Sik
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.117-125
    • /
    • 2008
  • With increase of concern about the Ubiquitous application, the necessity of the computer system which is miniaturized is becoming larger. The ARM processor is showing a high share from embedded system market. In this paper, ideal method for RTD-1000 controller construction and development is described using ARM microcontroller. Existing RTD-1000 measures distance of disconnection or defect of sensing casket by measuring receiving reflected wave which was sent via copper wire inside the leaking sensing rod. Using this RTD-1000, leakage and breakage of water and oil pipe can be sensed and it reports damage results to the networks. But, existing RTD-1000 wastes hardware resources much and costs a great deal to installation. Also, it needs a cooling device because the heating problem, and has some problem of the secondary memory unit such as the hard disk. So, long tenn maintenance has some problems in the outside install place. In this paper, for the resolving the problem of RTD-1000, RTD-1000A embedded system based on ARM is proposed and simulated.

  • PDF

A Research on Glass Breakage Vs. Surface Temperature on Fire Exposed Glass for The Water Film Cooling-down Glazing System (수막보호 유리벽의 가열면 온도변화에 따른 급냉파열특성에 관한 연구)

  • 박형주;지남용;김창훈
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.301-310
    • /
    • 2001
  • 본 연구는 내화성능을 가진 수막보호유리벽을 실제 건축물에 적용하는데 있어서 필수적으로 고려해야 할 가상시나리오 중에서 수막이 유리면을 보호하기 이전에 유리면에 근접되어 있는 화염으로부터 방출되는 복사열이 유리면이 가열된 상태에서 수막이 형성될 경우 유리면의 온도가 급속히 냉각됨으로서 발생할 수 있는 급냉파열특성을 규명하기 위해 실험한 연구로서 가열면온도범위에 따라 유리면에$150^{\circ}C$이상 $250^{\circ}C$이하에서 수막이 형성될 경우 급냉파열은 일어나지 않았으나 일반유리는 $100^{\circ}C$이상 $150^{\circ}C$이하에서 급냉파열이 일어남을 확인하였다. 즉 방화구획벽에 적용가능한 수막형성유리벽의 유리가 강화유리인점을 착안하면 수막의 도포이전에 강화유리면의 온도가 $250^{\circ}C$까지 올라가기 전에는 수막을 유리면에 접촉하여도 유리면의 급냉파열이 일어나짐 않음을 확인할 수 있었다. 이점은 일정한 구획내에서 유리면의 직근에 설치된 감지기에 의해 수막형성시스템의 가동을 할 경우 급내파열형상이 발생하지 않는 온도범위를 설정할 때 중요한 데이터로 활용가능하다. 결과적으로 국부복사열에 의하여 온도범위를 설정할 때 중요한 데이터로 활용가능하다. 결과적으로 국부복사열에 의하여 유리면의 온도가 급냉파열현상을 일으키는 한계온도에 이르기 전에 유리벽체 상부의감지기의 작동이 필수적으로 일어날 수 있음을 증명한다면 수막을 이용한 유리벽체를 일정시간이상의 내화성능이 요구되는 방화구획의 수직부재로 활용하는데 있어서 걸림돌이 되는 급냉파열에 대한 우려를 종식시키는데 이바지할 수 있다.l류 11.56%, acid류 38.87%, hydrocarbon류 2.89%, ester류 0.80%, 총 70.32%가 확인되었다. Alcohol류에서 linalool가 3.78%, acid류에서는 caproic acid류가 14.40%, carbonyl류에서 2-hydroxy-4-methoxyacetophenone이 2.99%, hydrocabon류에서는 aromadendrene가1.59% 그리고 ester류에서는 methyl palmitate가 0.43%으로 가장 많이 함유하고 있었다.0ppm에서 약 25.6%흡수되었고 ferric citrate 100ppm은 24.7%, ferrous sulfate는 19.7%흡수되었다. ILC를 첨가하지 않은 100ppm 철분염 용액은 ferrous sulfate를 제외하고는 흡수도가 감소되었다. 철분 결핍된 쥐에게 gavage 방법에 의하여 철분강화우유를 투여하였을 때 철분 25ppm 시료에서는 ferrous sulfate가 12.5%로 가장 높았고 ferrous lactate는 8.1%, ferric citrate는 6.5% 흡수되었다. 철분 100ppm수준에서는 흡수율이 낮아져 ferrous sulfate는 25ppm 시료보다 절반이하 수준이었다. Ferric citrate는 차이가 거의 없었으며 ferrous lactate는 70%수준이었다. 이상의 결과에서 철분강화우유에 사용하기 적합한 철분염은 ferrous lactate, ferric citrate였는데 특히 ferrous lactate는 제품의 이화학적 품질, 생이용성 측면 모두에서 가장 좋은 것으로 나타났다.다 높았으며, 1회당 평균 8.1$\pm$5.1개의 난포란을 회수하였다.

  • PDF