• Title/Summary/Keyword: Cooling Blade

Search Result 159, Processing Time 0.024 seconds

Heat transfer coefficient measurement in the Blockage channel with Repeated Jet Impingement (반복된 제트 충돌을 갖는 내부 유로의 평균 열전달 계수 측정)

  • Park, Seoung Duck;Lee, Ki Seon;Kim, Sug Bum;Jo, Yong Hwa;Jeon, Chang Soo;Kwak, Jea Su;Huh, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.4
    • /
    • pp.7-12
    • /
    • 2008
  • Averaged heat transfer coefficients were measured in a turbine blade internal cooling passage model with three blockage walls. Each blockage wall was equipped with 9 staggered holes or slots in order to create different shaper of repeated jet impingement. The effect of jet shape on the averaged heat transfer coefficient was studied by the copper-thermocouple method and three Reynolds number of 10,000, 20,000, and 30,000 were tested. Results showed that the repeated stagger jets could increase the averaged heat transfer coefficient by at least 9 times compared to the smooth channel cases. Due to the large pressure drop induced by the repeated jet impingement, the thermal performance was less than 1 for all cases and decreased as the Reynolds number increased. Among the tested cases, the widest slot showed the best thermal performance. The measurement results showed that the thermal performance of the heat transfer augmentation by repeated stagger jets could be improved by altering the jet shape, and other shape of impingement jet will be studied in near future.

  • PDF

Performance Analysis of an Axial Flow Turbine Stage with Coolant Ejection from Stator Trailing Edge (정익 후연의 냉각유체분사를 포함한 축류터빈단의 성능해석)

  • Kim, Tong Seop;Kim, Jae Hwan;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.831-840
    • /
    • 1999
  • In this work, an aerothermodynamic calculation model for cooled axial flow turbine blades with trailing edge ejection is suggested and a mean line performance analysis of a turbine stage with nozzle cooling is carried out. A unique model regarding the interaction between coolant and main gas is proposed, while existing correlations are adopted to predict viscous loss and blade outflow angle. The interactions considered are the heat transfer from main gas to coolant and the temperature and pressure losses by the mixing of two streams due to the trailing edge coolant ejection. For a stator blade without ejection, trailing edge loss calculated by the trailing edge analysis is compared with that calculated by loss correlation. The effect of heat transfer effectiveness of coolant passage on the mixing loss is analyzed. For a model turbine stage with nozzle cooling, parametric analyses are carried out to investigate the effect of main design variables(coolant mass flow ratio, temperature and ejection area) on the stage performance.

System optimization of the low noise Wave Fan (저소음 Wave Fan 의 System 최적화)

  • Cho, Kyung-Seok;Kim, Woo-June;Joo, Won-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1100-1103
    • /
    • 2007
  • For the past decade many effort has been delivered to understand noise generation mechanism for the small size engine cooling fan. As a result of that effort, the low noise fan such as the Wave fan was developed. Now the Wave fan becomes the well known low noise engine cooling fan. But in case of the new car development, the system in the new car will be different from previous one. So we need system optimization for every new model. In case of special application, a low speed fan should be developed to match system requirement. In that case, we meet severe engineering requirement by conducting fan system optimization instead of the simple fan scaling. In this paper, I will show you the system optimize process.

  • PDF

Environmentally Conscious Machining Technology of Aircraft Material(12Cr steel) (항공기소재(고크롬강)의 환경친화적 가공기술)

  • 강명창;김정석;이득우;황윤호;송준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1051-1054
    • /
    • 2002
  • Environmentally conscious machining and technology have been taking more and more important position in machining process. Since cutting fluid has some impact on environment, many researches are being carried out to minimize the use of cutting fluid. It can be Increased the environmental pollution through not using coolant any more or minimizing it. In this study, the cooling effects of cutting methods using the compressed cold air, dry cutting and cutting fluid will investigate in the blade machining. In order to examine the characteristics of cutting and tool in the environmentally conscious machining, this work investigates experimentally the degree of tool wear, cutting force and characteristics of surface roughness in relation to machining conditions and cooling methods.

  • PDF

Fan Noise Prediction Method of Air Cooling System (공기 냉각 시스템의 홴 소음 예측 기법)

  • Lee, Chan;Kil, Hyun-Gwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.952-960
    • /
    • 2008
  • Fan noise prediction method is presented for air conditioning, automobile and electronic cooling system applications where fan acts as an internal equipment having very complicated flow interaction with other various system components. The internal flow paths and distribution in the fan-applied systems such as computer or air conditioner are analyzed by using the FNM(flow network modeling). Fan noise prediction method comprises two models for the discrete frequency noise due to rotating steady aerodynamic lift and blade interaction and for the broadband noise due to turbulent boundary layer and wake vortex shedding. Based on the fan operation point predicted from the FNM analysis results and fan design parameters, the present far noise model predicts overall sound pressure level and spectrum. The predictions for the flow distribution, the fan operation and the noise level in air cooling system by the present method are well agreed with 3-D CFD and actual noise test results.

Noise Optimization of the Cooling Fan in an Engine Room by using Neural Network (신경망이론을 적용한 엔진룸내의 냉각팬 소음 최적화 연구)

  • Chung, Ki-Hoon;Choi, Han-Lim;Kim, Bum-Sub;Kim, Jae-Seung;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.116-121
    • /
    • 2002
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time, the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. To calculate the unsteady resultant force over the fan blade in an unsymmetric engine room. Time-Marching Free-Wake Method is used. From the calculations of unsteady force on fan blades, noise signal of an engine cooling fan is calculated by using an acoustic similarity law. Noise optimization is obtained from Neural Network which is constructed based on the calculated flow rate and noise spectrum.

  • PDF

Development of an Axial F.R.P. Fan for Cooling Tower (냉각탑용 축류형 F.R.P. 팬의 개발)

  • Oh, Keon-Je;Kim, Sun-Sook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.735-741
    • /
    • 2007
  • An axial F.R.P. fan model for cooling tower is developed. The fan is designed using the equations for one dimensional inviscid flow through the fan blade. Fan shape is swept forward with a parabolic function. Calculations of the three dimensional turbulent flow around the fan are carried out to investigate performance of the fan. Data of the total pressure rise and hydraulic efficiency can be obtained for the various setting angles. Calculated values of the total pressure rise and hydraulic efficiency at the design point are less than those of the design specification. The prototype of the F.R.P. fan is made by laminating of the fiberglass and epoxy resins on the mold of fan shape.

Noise Optimization of the Cooling Fan in an Engine Room by using Neural Network (신경망이론을 적용한 엔진룸내의 냉각팬 소음 최적화 연구)

  • Chung, Ki-Hoon;Park, Han-Lim;Kim, Bum-Sub;Kim, Jae-Seung;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.318.2-318
    • /
    • 2002
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate fur cooling of engines. At the same time, the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. To calculate the unsteady resultant force over the fan blade in an unsymmetric engine room, Time-Marching Free-Wake Method is used. From the calculations of unsteady force on fan blades, noise signal of an engine cooling fan is calculated by using an acoustic similarity law. (omitted)

  • PDF

Development of the Front End Cooling Fan of a Car (자동차 프런트 엔드 쿨링팬 개발)

  • Oh, Keon-Je;Cho, Won-Bong;Bae, Chun-Keun;Lee, Su-Hwa;Lee, Seung-Bae;Ju, Phil-Ho;Kim, Jong-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.384-390
    • /
    • 2005
  • A automobile front-end cooling fan are designed and tested in the present study. The design technique is developed using the one-dimensional inviscid flow through the fan blade, the empirical equations, and the performance prediction models. Numerical calculations of the three-dimensional turbulent flow around the designed cooling fan are carried out. Flow characteristics and pressure distributions on the pressure and suction side of the fan are investigated. Performance test results of the total pressure and flow rate are presented.

  • PDF

Power and Heat Load of IT Equipment Projections for New Data Center's HVAC System Design (데이터센터의 공조시스템 계획을 위한 IT장비의 전력 및 발열량 예측에 대한 연구)

  • Cho, Jin-Kyun;Shin, Seung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.212-217
    • /
    • 2012
  • The cooling of data centers has emerged as a significant challenge as the density of IT equipment increased. With the rapid increasing of heat load and cooling system, predictions for electronics power trends have been closely watched. A data center power density projection is needed so that IT organizations can develop data centers with adequate cooling for reasonable lifetimes. This paper will discuss the need for something more than processor and equipment power trend projections which have overestimated the required infrastructure for customers. This projection will use data from a survey of actual enterprise data centers and the ASHRAE projections to formulate a data center server heat load trend projection.