• Title/Summary/Keyword: Cooling Air Velocity

Search Result 232, Processing Time 0.026 seconds

A Study on the Comparison of Thermal Comport Performance Indices for Cooling Loads in the Classroom (학교건물에서 냉방부하에 따른 열적 쾌적성 평가지표 비교 연구)

  • Noh, Kwang-Chul;Oh, Myung-Do
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1274-1279
    • /
    • 2004
  • We performed the numerical study on the comparison of thermal comport performance indices for cooling loads in the classroom when the 4-way cassette air-conditioner is mounted on the ceiling. We investigated the velocity and the temperature distribution of the classroom as with respect to the variation of the air diffusion angle of the air-conditioner. Air diffusion performance index and Predicted mean vote were used for analyzing the characteristics of the thermal comport in the classroom and comparing their values each other. From the numerical results, we knew that the thermal comport is largely affected by the air diffusion angle and velocity of the air-conditioner. And we also found out that the qualitative tendency of the distribution between Air diffusion performance index and Predicted mean vote is very similar in all occupied zone.

  • PDF

A Study on Performance Characteristics of a Dehumidifier with Multi-layer Type Heat Exchangers Varying Frontal Air Velocity (다층형 열교환기를 이용한 제습기의 전면 풍속 변화에 따른 성능 특성에 관한 연구)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2323-2327
    • /
    • 2010
  • The experimental apparatus consists of dehumidifier with multi-layer type heat exchangers to remove the moisture from automatic equipments, semiconductors, and manufacturing processes under the low temperature environment, and chemical production lines which are likely to take moisture. The major components of this system are four evaporators with different fin pitch, two compressors, two condensers and an expansion valve. In this study, the performance characteristics of dehumidifier is analyzed by the variations of frontal air velocity in the first heat exchanger(evaporator). The cooling capacity of each heat exchanger is acquired by the enthalpy calculating from measuring point of temperature and relative humidity of the first heat exchanger from 1.0m/s to 4.0m/s with increasing interval 0.5m/s, and the front air velocity. As a result, it is found that cooling capacity of the first heat exchanger showed the best cooling capacity when its frontal air velocity is 2.0 m/s.

A Study on the Improvement of Indoor Thermal and Air Environment Made by Ceiling Cassette Type Cooling and Heating Unit in Classrooms (천장 카세트형 냉·난방기에 의해 형성되는 학교 교실의 실내 열환경 및 공기환경의 개선에 대한 연구)

  • Chang, Hyun-Jae;Lee, Ha-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.6
    • /
    • pp.141-148
    • /
    • 2012
  • Ceiling cassette type air conditioner has been a main stream as a heating/cooling system recently in school, Korea. In this study, indoor thermal environments made by ceiling cassette type air conditioner were investigated by CFD simulation. Concentrations of $CO_2$ were investigated by a field measurement. Indoor thermal environment with the velocity inlet angle of $45^{\circ}$ from the ceiling in heating season was very ununiform so that thermal area was divided into two parts those the one is window side which is cold, and the other is corridor side which is hot. In cooling season under the same condition, there are areas too hot or too cold. If the velocity inlet angle is set in $30^{\circ}$ from the ceiling, indoor thermal environments was improved greatly in cooling season and heating season, too. Also, from the field measurement of $CO_2$ concentrations, it was suggested to install ventilators with proper air volume considered the number of class students.

Rapid Cooling Mechanism Utilizing Acoustic Streaming Generated by Ultrasonic Vibrations (초음파 진동에 의해 발생된 음향유동을 활용한 급속냉각 메카니즘)

  • Loh, Byoung-Gook;Kwon, Ki-Jung;Lee, Dong-Ryul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1057-1066
    • /
    • 2006
  • Acoustic streaming Induced by longitudinal vibration at 30 kHz is visualized for a test fluid flow between the stationary glass plate and ultrasonic vibrating surface with particle imaging velocimetry (PIV) To measure an increase in the velocity of air flow due to acoustic streaming, the velocity of air flow in a gap between the heat source and ultrasonic vibrator is obtained quantitatively using PIV. The ultrasonic wave propagating into air in the gap generates steady-state secondary vortex called acoustic streaming which enhances convective cooling of the stationary heat source. Heat transfer through air in the gap is represented by experimental convective heat transfer coefficient with respect to the gap. Theoretical analysis shows that gaps for maximum heat transfer enhancement are the multiple of half wavelength. Optimal gaps for the actual design are experimentally found to be half wavelength and one wavelength. A drastic temperature variation exists for the local axial direction of the vibrator according to the measurement of the temperature distribution in the gap. The acoustic streaming velocity of the test fluid in the gap is at maximum when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which are specifically 6 mm and 12 mm.

Design of an Aquifer Thermal Energy Storage System(II) : Thermal Analysis (지하대수층을 이용한 축열시스템의 설계(II) : 열해석)

  • Lee, K.S.;Lee, T.H.;Song, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.315-324
    • /
    • 1994
  • The energy recovery efficiency(ERE) of an aquifer thermal energy storage system was calculated using curvilinear coordinate. The results of the calculation were compared with the experimental results, and agreed within 11% of the discrepancy. The variation of ERE was investigated as a function of the underground water natural velocity, the amount of the stored energy, and period of the energy recovery. The slower the natural velocity and shorter the recovery period, the higher ERE was yielded. Also it was found that increase in the amount of energy storage yields higher ERE, and carries out less influential ERE to the natural velocity. Reiterative usage of the aquifer as a thermal storage tends to gradually increase ERE. The result of this study implements that the aquifer thermal energy storage system is suitable for large cooling/heating loads, such as district cooling/heating.

  • PDF

A Study on the Energy Saving of Cooling/Reheating System Using Heat Exchanger (열교환기를 사용한 냉각/재가열 장치의 에너지 절감에 관한 연구)

  • Kim, Jin-Hyuck;Yoo, Seong-Yeon;Choi, Yang-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.482-491
    • /
    • 2010
  • In conventional air-handling units, when the circulated air from the air-conditioned space pass through the cooling coil, the air is over-cooled to eliminate the moisture as well as to decrease the temperature. The purpose of this study is to estimate the thermal performance and energy saving of the cooling/reheating system using heat exchanger which can save both cooling energy and reheating energy by exchanging heat between the cooled air and reheated air. The energy balance equations to estimate the state of the air for each components were provided and the heat transfer rates and the energy saving rates for the system were calculated from the equations. The results showed that the energy saving was up to 40% under present conditions, and saving rates were significantly affected by the air velocity, inlet conditions and the effectiveness of heat exchanger.

The Study on Indoor Thermal Environment during Convection Heating - Thermal Comfort by Indoor Air Temperature and Velocity - (대류난방시 실내열환경에 관한 연구 - 온도 및 기류속도에 대한 온열쾌적감-)

  • Kim Dong-Gyu;Chung Yong-Hyun
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.209-214
    • /
    • 2005
  • Draft is defined as an unwanted local cooling of the human body caused by air movement. It is a serious problem in many ventilated or air conditioned buildings. Often draft complaints occur although measured velocities in the occupied zone maybe lower than prescribed in existing standards. Purpose of this study is to clarify the evaluation of thermal comfort based on temperature and air velocity in winter. Experiments were performed in an environmental chamber in winter. Indoor temperature and air velocity was artificially controlled. The experiments were performed to evaluate temperature conditions and air velocity conditions by physiological and psychological responses of human. According to physiological responses and psychological responses, it was clear that the optimum air velocity is about 0.15 m/s and 0.30 m/s.

Thermal and Flow Modeling and Fin Structure Optimization of an Electrical Device with a Staggered Fin (엇갈림 휜을 갖는 전자기기의 열유동 모델링 및 휜 형상 최적 설계)

  • Kim, Chiwon;Lee, Kwan-Soo;Yeo, Moon Su
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.645-653
    • /
    • 2017
  • Thermal and flow modeling and fin structure optimization were performed to reduce the weight of an electrical device with a staggered fin. First, a numerical model for thermal and flow characteristics was suggested, and then, the model was verified experimentally. Using the verified model, improvement in cooling performance of the cooling system through the staggered fins was predicted. As a result, 87.5% of total heat generated was dissipated through the cooling fins, and a thermal island was observed in the rotor because of low velocity of the internal air flow through the air gap. In addition, it was confirmed that the staggered fin improves the cooling performance but it also increases the total pressure drop within the cooling system, by maximizing the leading edge effect. Based on this analysis result, the effect of each design parameter on the thermal and flow characteristics was analyzed to select the main optimal design parameters, and multi-objective optimization was performed by considering the cooling performance and the fin weight. In conclusion, the optimized fin structure improved the cooling performance by 7% and reduced the fin weight by 28% without any compromise of the pressure drop.

An experimental study of the air-side particulate fouling in finned-tube heat exchangers of air conditioners through accelerated tests (공기조화기용 열교환기의 공기측 파울링 가속 특성 분석)

  • Ahn, Young-Chull;Cho, Jae-Min;Lee, Jae-Keun;Lee, Hyun-Uk;Ahn, Seung-Phyo;Youn, Deok-Hyun;Kang, Tae-Wook;Ock, Ju-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1857-1862
    • /
    • 2003
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the fouling characteristics trough accelerated tests. The fouling characteristics are analyzed as functions of a dust concentration (1.28 and 3.84 $g/m^3$), a face velocity (0.5, 1.0, and 1.5 m/s), and a surface condition. The cooling capacity in the slitted finned-tube heat exchangers at the face velocity of 1 m/s decreases about 2% and the pressure drop increases up to 57%. The rate of build-up of fouling is observed to be 3 times slower for this three-fold reduction of dust concentration whilst still approaching the same asymptotic level.

  • PDF

A Study on Burial Guideline of Horizontal Geothermal Heat Exchanger based on Exit Temperature (출구 온도를 고려한 수평형 지중열교환기의 매설 지침에 관한 연구)

  • Cho, Sung-Woo;Ihm, Pyeong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.553-558
    • /
    • 2014
  • Geothermal energy can be used with a geothermal heat pump or an earth-to-air heat exchange system (EAHES), which is referred to as a "cooling tube" in Korea. In this study, we suggest EAHES burial guidelines in terms of the parameters of buried pipe length and air velocity regarding the exit air temperature of EAHES. The exit air temperature for EAHES in three regions (Changwon, Busan and Seoul) was calculated with variation in buried pipe length and air velocity at ${\Phi}100mm$ and ${\Phi}200mm$. In conclusion, variation in the buried pipe length is more effective than that of air velocity to achieve the required exit air temperature.