• Title/Summary/Keyword: Cooling Air

Search Result 2,710, Processing Time 0.023 seconds

Numerical Analysis on Recirculation Generated by Obstacles around a Cooling Tower (냉각탑 주위의 장애물에 의한 재순환 현상에 관한 수치해석)

  • Lee Jung-Hee;Choi Young-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.578-586
    • /
    • 2006
  • The present study has been conducted to examine the effect of obstacles around a cooling tower and an air-guide to prevent recirculation. In order to analyze the interaction between external flow and cooling tower exit flow, the external region as well as the cooling, tower are included in computational domain. Two dimensional analysis is performed using the finite volume method with non-orthogonal and unstructured grid system. The standard ${\kappa}-{\varepsilon}$ turbulence model is used. To investigate the recirculation phenomena, flow and temperature fields are calculated with three approaches such as, the distance between cooling tower and obstacle, the allocated geometrical type, and the effect of height of obstacle. In addition, the air-guide is considered in the current computation. The mean recirculation rate increases with the height of obstacle. The effect of air-guide to reduce the mean recirculation rate is obviously observed.

Simulation and Experimental Study on an Air-Cooled $NH_3/H_2O$ Absorption Chiller (공랭형 $NH_3/H_2O$ 흡수식 냉동기의 모사 및 실험적 연구)

  • Oh Min Kyu;Kim Hyun Jun;Kim Sung Soo;Kang Yong Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1028-1034
    • /
    • 2005
  • The objective of this paper is to study the effects of the cooling air mass flow rate and the heat input variation by the simulation and the experiment. An air-cooled $NH_3/H_2O$ absorption chiller is tested in the present study. The nominal cooling capacity of the single effect machine is 17.6 kW (5.0 USRT). The overall conductance (UA) of each component, the cooling capacity, coefficient of performance and each state point are measured with the variation of the cooling air mass flow rate and the heat input. It is found that the COP and cooling capacity increase and then decreases with increasing the heat input. It is also found that the COP and the cooling capacity increase and keep constant with increasing the cooling air mass flow rate. The maximum COP is estimated as 0.51 and the optimum cooling air mass flow rate is $217\;m^3/min$ from the present experiment.

Optimal Air Jet System Design for the Turning of Hardened Material (고경도재료 선삭시 최적 에어제트 냉각시스템 설계)

  • 정보구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.58-62
    • /
    • 1996
  • In case of hard turning, tool wear is acclerated by heat. So we intend to decrease tool wear by using an air-jet cooling system. Before constructing the air-jet cooling system, no chipping conditions were selected through a statistical method, so called 'Taguchi method', and then the air-jet cooling system was developed by synthesizing and analyzing the results of experimental data through Taguchi method. The air-jet cooling system actually reduced flank wear of TiN coated tool by 25%.

  • PDF

Developing Optimal Pre-Cooling Model Based on Statistical Analysis of BEMS Data in Air Handling Unit (BEMS 데이터의 통계적 분석에 기반한 공조기 최적 예냉운전 모델 개발)

  • Choi, Sun-Kyu;Kwak, Ro-Yeul;Goo, Sang-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.10
    • /
    • pp.467-473
    • /
    • 2014
  • Since the operating conditions of HVAC systems are different from those for which they are designed, on-going commissioning is required to optimize the energy consumed and the environment in the building. This study presents a methodology to analyze operational data and its applications. A predicted operation model is to be produced through a statistical data analysis using multiple regressions in SPSS. In this model, the dependent variable is the pre-cooling time, and the independent variables include the power output of the supply air inverter during pre-cooling, the supply air set temperature during pre-cooling, the indoor temperature-indoor set temperature just before pre-cooling, supply heat capacity, and the lowest outdoor air temperature during non-cooling/non-heating hours. The correlation coefficient R2 of the multiple regression model between the pre-cooling hour and the internal/external factors is of 0.612, and this could be used to provide information related to energy conservation and operating guidance.

Effect of Filler on the Flow of Counter Flow Type Cooling Tower (충진재(Filler)가 대향류형(Counter Flow Type) 냉각탑 유동에 미치는 영향에 대한 연구)

  • Shin, Jeong-Hoon;Lee, Jun-Kyoung;Jin, Cheol-Gyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.565-572
    • /
    • 2022
  • The white plume from the cooling tower can be generated by mixing between discharging hot and humid air and cold air outside. This causes various problems such as icing, traffic disturbances, and fire factors in the vicinity, moreover it can also damage the image of a company. Various methods can be used to prevent white plume, one of them is to install a heat exchanger at the outlet of the cooling tower so that the heat exchanger transfers as much heat as possible to lower the temperature. Therefore the air flow path in the cooling tower should be optimized. Installation of the filler can be used to make the air flow better, thus we investigate the effect of filler on the air flow using CFD method. The pressure and velocity profile in the cooling tower could be acquired by the calculations. The filler made the velocity of the air entering the heat exchanger uniform this was because high flow resistance of the filler suppresses the generation of eddy in the cooling tower. But the total air pressure drop increased about 2 times with filler because the pressure drop by the filler accounted for about 60% of the total pressure drop.

Performance Evaluation of Heat Exchangers due to Air-side Particulate Fouling in the Air Conditioners (공기측 파울링에 의한 에어컨 열교환기의 성능분석 연구)

  • 안영철;조재민;이재근;이현욱;안승표;윤덕현;하삼철;강태욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.447-453
    • /
    • 2003
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the cooling performance and pressure drop on the air-side particulate fouling of heat exchangers for air conditioners. Air conditioners being used in the field such as inn, restaurant, and office are collected in chronological used order. Test results show 15% decrease of the cooling capacity and 44% increase of the pressure drop for the 7 years air conditioners used in the seaside inn.

Reduction of Cooling Load using Outdoor Air Cooling (외기냉방을 이용한 냉방부하 절감 연구)

  • Kim, Min-Yang;Kim, Young-Il;Chung, Kwang-Seop
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • Due to enhanced sealing and insulation of buildings, extensive use of glasses for building envelopes and increased use of heat generating office equipments, energy consumption of modem buildings for cooling is steadily increasing. With outdoor air cooling(ODAC) system, cooling load can be reduced by exchanging indoor air with the cold outdoor air during spring and fall seasons. If ODAC is operated based only on temperature, total cooling load may virtually increase if the outdoor humidity is high. To overcome this problem, ODAC should be controlled based on enthalpy. In this work energy saving characteristics of enthalpy controlled ODAC is studied using dynamic simulation. The result shows that cooling load can be reduced by 27% by adopting ODAC.

Small-Capacity Solar Cooling System by Desiccant Cooling Technology (태양열 이용 소용량 제습냉방시스템)

  • Lee, Dae-Young;Kwon, Chi-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.154-156
    • /
    • 2008
  • A prototype of the desiccant cooling system with a regenerative evaporative cooler was built and tested for the performance evaluation. The regenerative evaporative cooler is to cool a stream of air using evaporative cooling effect without an inc6rease in the humidity ratio. It is comprised of multiple pairs of dry and wet channels and the evaporation water is supplied only to the wet channels. By redirecting a portion of the air flown out of the dry channel into the wet channel, the air can be cooled down to a temperature lower than its inlet wet-bulb temperature at the outlet end of the dry channels. Incorporating a regenerative evaporative cooler eliminates the need for deep dehumidification in the desiccant rotor that is necessary to achieve low air temperature in the system with a direct evaporative cooler. Subsequently, the regenerative evaporative cooler enables the use of low temperature heat source to regenerate the dehumidifier permitting the desiccant cooling system more beneficial compared with other thermal driven air conditioners. At the ARI condition with the regeneration temperature of $60^{\circ}C$, the prototype showed the cooling capacity of 4.4 kW and COP of 0.75.

  • PDF

Investigation on the Reduction Effect on Cooling Power Consumption and Operating Cost of Mist-spray Outdoor Units in Air Conditioner

  • Lee, Keon-ho;Cho, Dong-woo;Kim, Hyemi;Song, Young-hak
    • Architectural research
    • /
    • v.19 no.4
    • /
    • pp.101-108
    • /
    • 2017
  • The use of the air conditioner is increasing due to the rise of the outdoor temperature during summer, and the problems of the fire and the cooling performance deterioration are caused due to lack of maintenance of the outdoor unit. In particular, overall performance of cooling system and efficiency in outdoor units have been degraded due to an intake of high-temperature outdoor air thereby increasing cooling energy and operating cost. Thus, this study aimed to increase efficiency of outdoor units by evaporating and cooling intake air through mist spray at the intake port surface in the outdoor unit. The measurements results showed that total power consumption of misting outdoor unit compared to that of conventional outdoor units was reduced by 21% approximately, and total power consumption of the entire system including pump was reduced by 16.7%. In addition, the operating cost including water use was reduced by 13.5% approximately. In summary, if a mist-spray nozzle kit is installed in air-cooled outdoor units, the reduction in the usage of cooling energy and operating cost will be achieved without replacement of existing cooling systems or a large scale of repairs.

DEVELOPMENT OF NIGHT COOLING SYSTEM FOR GREENHOUSE USING COOL AIR AND WATER FROM AN ABANDONED COAL MINE

  • Whoa S. Kang;Wie S. Kang;Lee, Gwi H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1136-1145
    • /
    • 1996
  • This study was to develop the most effective cooling system which is needed to cool greenhouse during summer night to get early blooming of strawberries. Various cooling systems were designed and constructed to utilize the cool air and water from tan abandoned coal mine. Cooling systems built for this study were an evaporative cooling system with pad, cooling system using a small or large radiator , and duct cooling system using cool are drawn from coal mine. These systems were individual tested to investigate their effects on cooling greenhouse during summer night. Also, a combined cooling system was tested with operating an evaporative cooling system, small radiator, and duct cooling system simultaneously. The results in this study showed that individual cooling systems such as evaporative cooling system, small radiator, and cooling duct had about the same effect on cooling greenhouse. The combined system had little better cooling effect than that of individual cooling syst m except the large radiator . The most effective system for cooling of greenhouse was obtained with using a large a large radiator as the heat exchanger. With operating a large radiator, temperature inside the greenhouse was dropped to about 15-16$^{\circ}C$ while outside temperature was 23-24$^{\circ}C$ during summer night.

  • PDF