• Title/Summary/Keyword: Coolant temperature

Search Result 757, Processing Time 0.037 seconds

Effect of Coolant Flow Characteristics in Cooling Plates on the Performance of HEV/EV Battery Cooling Systems (하이브리드/전기 자동차 배터리 냉각 시스템의 냉각수 유동 특성이 냉각 성능에 미치는 영향에 대한 해석적 연구)

  • Oh, Hyunjong;Park, Sungjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.179-185
    • /
    • 2014
  • Average temperature and temperature uniformity in a battery cell are the important criteria of the thermal management of the battery pack for hybrid electric vehicles and electric vehicles (HEVs and EVs) because high power with large size cell is used for the battery pack. Thus, liquid cooling system is generally applied for the HEV/EV battery pack. The liquid cooling system is made of multiple cooling plates with coolant flow paths. The cooling plates are inserted between the battery cells to reject the heat from batteries to coolant. In this study, the cooling plate with U-shaped coolant flow paths is considered to evaluate the effects of coolant flow condition on the cooling performance of the system. The counter flow and parallel flow set up is compared and the effect of flow rate is evaluated using CFD tool (FLUENT). The number of counter-flows and flow rate are changed and the effect on the cooling performance including average temperature, differential temperature, and standard deviation of temperature are investigated. The results show that the parallel flow has better cooling performance compared with counter flow and it is also found that the coolant flow rate should be chosen with the consideration of trade-off between the cooling performance and pressure drop.

A Study on Accelerated Corrosion Rate of Stainless Steel Type 630 with Increasing Temperature of B-free Alkaline Coolant (무붕산 알칼리 냉각재 온도 증가에 따른 Type 630 스테인리스강의 부식특성 평가 연구)

  • Jeongsoo Park;Sang-Yeob Lim;Soon-Hyeok Jeon;Ju-Seong Kim;Jeong-Mok Oh;Hee-Sang Shim
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.49-55
    • /
    • 2024
  • Stainless 630 (or 17-4PH) is a precipitation-hardening martensitic stainless steel that has excellent mechanical properties and corrosion resistance. These characteristics make the STS630 to be used as a consisting material for various components such as spider, pin, spring, and spring retainer, of the control rod drive mechanism (CRDM) in pressurized water reactors (PWRs). In general, it is well known that the oxide layer of stainless steel consists of a duplex layer, a compact inner layer of FeCr2O4 spinel, and a coarse-grained outer layer of Fe3O4 spinel in PWR primary coolant condition. However, the characteristics of the oxide layer can be sensitively influenced by various water chemistry conditions such as temperature, dissolved oxygen, dissolved hydrogen, pH, pH adjuster type, and exposure time. In this work, we investigate the corrosion properties of the STS630 as a function of coolant temperature in an NH3 alkaline solution for its boron-free application in a small modular reactor, to confirm the feasibility for usage as a boron-free SMR structural material. As a result, oxide layer of corroded STS630 is consist of double-layer oxides consisting of a Cr-rich dense inner oxide and a Fe-rich polyhedral outer particles like as that in commercial PWR primary coolant. The corrosion rate of STS630 increases with increase in test time and temperature and the corrosion rate-time model equation was developed based on experimental data. Overall, it is expected that the results in this study provides useful data for the corrosion behavior of STS630 in alkaline environments, contributing to the development of selecting suitable materials for SMRs.

Analysis of Performance Enhancement of a Combined Cycle Power Plant by the Change of Design Parameters of Gas Turbine Using Coolant Pre-cooling (냉각공기 예냉각을 통한 가스터빈 설계변수 변화에 의한 복합발전시스템 성능향상 분석)

  • Kwon, Hyun Min;Kim, Tong Seop;Kang, Do Won;Sohn, Jeong Lak
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.5
    • /
    • pp.61-67
    • /
    • 2016
  • Turbine blade cooling is one of the major technologies to enhance the performance of gas turbine and combined cycle power plants. In this study, two cases of coolant pre-cooling schemes were applied in combined cycle power plant: decrease of coolant mass flow needed to cool turbine blade and increase of turbine inlet temperature (TIT). Both schemes are benefited by the decrease of coolant temperature through coolant pre-cooling. Under the same degree of pre-cooling, increasing TIT exhibits larger plant power boost and higher plant efficiency than reducing coolant flow. As a result, the former produces the same gas turbine power with a much smaller degree of pre-cooling than the latter. Another advantage of increasing TIT is a higher plant efficiency. Even with an assumption of partial achievement of the theoretically predicted TIT, the method of increasing TIT can provide considerably larger power output.

Effect of Flow Pattern of Coolant for Injection Mold on the Deformation of Injection Molding (사출금형 냉각수의 유동 패턴이 사출성형품의 변형에 미치는 영향)

  • Choi, Kye-Kwang;Hong, Seok-Moo;Han, Seong-Ryeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.92-99
    • /
    • 2015
  • The deformation of injection molding is seriously affected by injection molding conditions, such as melt and mold temperature and injection and holding pressure. In these conditions, the mold temperature is controlled by flowing coolant, which can be classified by the Reynolds number in the mold-cooling channel. In this study, the deformation of the automotive side molding according to the variation of the Reynolds number in the coolant was simulated by Moldflow. In the results, as the Reynolds number was increased, the mold cooling was also increased. However, when the Reynolds number exceeded a certain range, the mold cooling was not increased further. In addition to the Moldflow verification, the mold cooling by the coolant was simulated by CFX. The CFX results confirmed that the Reynolds number significantly influenced the mold cooling. The coolant, which has a high Reynolds number value, quickly cooled the mold. However, the coolant, which has a low Reynolds number value, such as 0 points, hardly cooled the mold. In an injection molding experiment, as the Reynolds number was high, the deformation of the moldings was reduced. The declining tendency of the deformation was similar to the Moldflow results.

Performance Analysis of an Axial Flow Turbine Stage with Coolant Ejection from Stator Trailing Edge (정익 후연의 냉각유체분사를 포함한 축류터빈단의 성능해석)

  • Kim, Tong Seop;Kim, Jae Hwan;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.831-840
    • /
    • 1999
  • In this work, an aerothermodynamic calculation model for cooled axial flow turbine blades with trailing edge ejection is suggested and a mean line performance analysis of a turbine stage with nozzle cooling is carried out. A unique model regarding the interaction between coolant and main gas is proposed, while existing correlations are adopted to predict viscous loss and blade outflow angle. The interactions considered are the heat transfer from main gas to coolant and the temperature and pressure losses by the mixing of two streams due to the trailing edge coolant ejection. For a stator blade without ejection, trailing edge loss calculated by the trailing edge analysis is compared with that calculated by loss correlation. The effect of heat transfer effectiveness of coolant passage on the mixing loss is analyzed. For a model turbine stage with nozzle cooling, parametric analyses are carried out to investigate the effect of main design variables(coolant mass flow ratio, temperature and ejection area) on the stage performance.

A numerical study of the flow field in the IRWST of KNGR (차세대원자로 재장전수조내의 유동장에 대한 수치해석적 연구)

  • Kang Hyung Seok;Kim Hwan Yeol;Yoon Juhyeon;Bae Yoon Yeong;Park Jong Kyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.205-212
    • /
    • 1999
  • Safety Depressurization System of the Korean Next Generation Reactor prevents the Reactor Coolant System from over-pressurization by discharging the coolant with high pressure and temperature into the In-containment Refueling Water Storage Tank(IRWST) during an accident. If temperature in the IRWST rises above the temperature limit of $200\;^{\circ}F$ due to the discharged coolant, an unstable steam condensation may occur and cause large load on the IRWST wall. To investigate whether this condition can be reached or not for the design basis accident, the flow and temperature distributions of water in the IRWST wire calculated by using CFX 4.2 computer code. The results show that the local water temperature does not exceeds the temperature limit within the transient time of 5 seconds.

  • PDF

Improvement of Gasoline Engine Performance by Modifying the Engine Cooling System (엔진 냉각계 개선을 통한 가솔린엔진의 성능 향상)

  • 류택용;신승용;이은현;최재권
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.1-10
    • /
    • 1998
  • In this paper, we investigated the improvement of characteristics of knock, emission and fuel consumption rate by optimizing the location and size of water transfer holes in cylinder head gasket without change of engine water jacket design itself. The cooling system was modified in the direction of reducing the metal temperature in the head and increasing the metal temperature in the block. The optimization of water transfer holes in cylinder head gasket was obtained by "flow visualization test". The water transfer holes were concentrated in front side of the engine in order to reduce thermal boundary layer in the water jacket of No. 2 and No. 3 combustion changer in the cylinder head, which would have a large knock intensity, and increase thermal boundary layer in the water jacket of the cylinder block. When the modified coolant flow pattern was applied as proposed in this paper, the knock characteristic was improved. The spark timing was advanced up to 2$^{\circ}$ in low and middle speed range at a full load. In addition, HC emission at MBT was reduced by 5.2%, and the fuel consumption rate was decreased up to 1% in the driving condition of 2400 rpm and 250 KPa. However, since this coolant flow pattern mentioned in this paper might deteriorate the performance of vehicle cooling system due to the coolant flow rate reduction, a properly optimized point should be obtained. obtained.

  • PDF

Natural Convection Heat Transfer Characteristics of the Molten Metal Pool with Solidification by Boiling Coolant

  • Cho, Jae-Seon;Suh, Kune-Yull;Chung, Chang-Hyun;Park, Rae-Joon;Kim, Sang-Baik
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.719-725
    • /
    • 1997
  • This paper presents results of experimental studies on the heat transfer and solidification of the molten metal pool with overlying coolant with boiling. The metal pool is heated from the bottom surface and coolant is injected onto the molten metal pool. As a result, the crust, which is a solidified layer, may form at the top of the molten metal pool. Heat transfer is accomplished by a conjugate mechanism, which consists of the natural convection of the molten metal pool, the conduction in the crust layer and the convective boiling heat transfer in the coolant. This work examines the crust formation and the heat transfer rate on the molten metal pool with boiling coolant. The simulant molten pool material is tin (Sn) with the melting temperature of 232$^{\circ}C$. Demineralized water is used as the working coolant. The crust layer thickness was ostensibly varied by the heated bottom surface temperature of the test section, but not much affected by the coolant injection rate. The correlation beかeon the Nusselt number and the Rayleigh number in the molten metal Pool region of this study is compared against the crust formation experiment without coolant boiling and the literature correlations. The present experimental results are higher than those from the experiment without coolant boiling, but show general agreement with the Eckert correlation, with some deviations in the high and low ends of the Rayleigh number. This discrepancy is currently attributed to concurrent rapid boiling of the coolant on top of the metal layer.

  • PDF

A Numerical Simulation of Regenerative Cooling Heat Transfer Processes for the Liquid Propellant Rocket Engine (액체추진제 로켓엔진의 재생냉각 열전달과정 전산모사)

  • 서호원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.54-61
    • /
    • 1998
  • A numerical simulation is attempted for the regenerative cooling heat transfer processes of the liquid propellant rocket engine. The heat transfer from the combustion gases to the thrust chamber wall is called gas side heat transfer. This heat is conducted radially to the coolant through the carbon deposit and metallic wall of thrust chamber Finally, this heat is convected away by the coolant flowing along the passages in the thrust chamber. The equivalence of these three heat fluxes of the above processes is utilized to determine the coolant side wall temperature, gas side wall temperature and the heat flux. When the number and shape(width, height) of coolant passages, the shape(size) of thrust chamber, oxidant and fuel properties, coolant properties, oxidant/fuel mixture ratio, coolant inlet temperature, the thickness of carbon deposit formed along the thrust chamber wall during combustion are given, reasonable radial direction temperature distributions and heat fluxes along the thrust chamber axis are obtained.

  • PDF

Thermo-fluid Dynamic Analysis through a Numerical Simulation of Canister (수치 모사를 통한 사출관 내부의 열유동 해석)

  • Kim, Hyun muk;Bae, Seong hun;Park, Cheol hyeon;Jeon, Hyeok soo;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.72-83
    • /
    • 2017
  • A thermo-fluid dynamic analysis was performed through the numerical simulation of a missile canister. Calculation was made in a fixed analytical volume and fully evaporated water was used as a coolant. To analyze the interaction among the hot gas, coolant, and mixture flow, Realizable $k-{\varepsilon}$ turbulence and VOF(Volume Of Fluid) model were chosen and parametric study was performed with the change of coolant flow rate. It could be found that the pressure on the canister top nonlinearly increased with the increase of coolant flow rate. Temperature and coolant distribution were closely related to the flow behavior in canister. Temperature on the canister bottom indicated a decrease being proportional to coolant flow rate in early times but after a specific time, the temperature increased with the tendency being reversed. In addition, the early part of temperature showed a fluctuating phenomenon because of the overall circulatory flow of mixture gas.