• Title/Summary/Keyword: Coolant channel

Search Result 133, Processing Time 0.024 seconds

Thermal Analysis of Water Cooled ISG Based on a Thermal Equivalent Circuit Network

  • Kim, Kyu-Seob;Lee, Byeong-Hwa;Jung, Jae-Woo;Hong, Jung-Pyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.893-898
    • /
    • 2014
  • Recently, the interior permanent synchronous motor (IPMSM) has been applied to an integrated starter and generator (ISG) for hybrid electric vehicles. In the design of such a motor, thermal analysis is necessary to maximize the power density because the loss is proportional to the power of a motor. Therefore, a cooling device as a heat sink is required internally. Generally, a cooling system designed with a water jacket structure is widely used for electric motors because it has advantages of simple structure and cooling effectiveness. An effective approach to analyze an electric machine with a water jacket is a thermal equivalent network. This network is composed of thermal resistance, a heat source, and thermal capacitance that consider the conduction, convection, and radiation. In particular, modeling of the cooling channel in a network is challenging owing to the flow of the coolant. In this paper, temperature prediction using a thermal equivalent network is performed in an ISG that has a water cooled system. Then, an experiment is conducted to verify the thermal equivalent network.

Experimental Study on the Heat Distribution in the Rectangular Mini Channel Heat Exchangers with MPCM Slurry (마이크로 캡슐 잠열재 슬러리를 적용한 미소채널 열교환기의 열분배 성능평가)

  • Jeon, Jong-Ug;Back, Chang-Huyn;Kim, Yong-Chan;Kim, Young-Deug;Choi, Jong-Min
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.645-650
    • /
    • 2006
  • The heat transfer performance and energy transport ability are relatively high due to higher specific heat. Therefore, it can be used in fields such as heating, ventilating, air-conditioning, refrigeration and heat exchangers. In this study, liquid-cooling heat exchangers were designed and tested by varying geometry and operating conditions. In addition, liquid-cooling heat exchangers were tested to provide performance data for MPCM slurry. The liquid-cooling heat exchangers had twelve rectangular channels with flow paths of 1, 2, 4 and 12. Silicon rubber heaters were used to control the heat load to the heat exchanger. Heat input ranged from 293 to 800 W, and inlet temperatures of working fluid varied from 15S to $27^{\circ}C$. The standard deviation of surface temperature was strongly affected by the coolant of MPCM Slurry, All MPCM-cooling heat exchangers showed higher cooling performance than the water-cooling heat exchanger except one path channel heat exchanger.

  • PDF

Numerical analysis of heat dissipation performance of heat sink for IGBT module depending on serpentine channel shape (수치 해석을 통한 절연 게이트 양극성 트랜지스터 모듈의 히트 싱크 유로 형상에 따른 방열 성능 분석)

  • Son, Jonghyun;Park, Sungkeun;Kim, Young-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.415-421
    • /
    • 2021
  • This study analyzed the effect on the cooling performance of the channel shape of a heat sink for an insulated gate bipolar transistor (IGBT). A serpentine channel was used for this analysis, and the parameter for the analysis was the number of curves. The analysis was conducted using computational fluid dynamics with the commercial software ANSYS fluent. One curve in the channel improved the heat dissipation performance of the heat sink by up to 8% compared to a straight-channel heat sink. However, two curves in the channel could not improve the heat discharge performance further. Instead, the two curves caused a higher pressure drop, which induces parasitic loss for the pumping of coolant. The pressure drop of the two-curve channel case was 2.48-2.55 times larger than that of a one-curve channel. This higher pressure drop decreased the heat discharge efficiency of the heat sink with two curves. The discharge heat per unit pressure drop was calculated, and the result of the straight heat sink was highest among the analyzed cases. This means that the heat discharge efficiency of the straight heat sink is the highest.

MNSR transient analysis using the RELAP5/Mod3.2 code

  • Dawahra, S.;Khattab, K.;Alhabit, F.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1990-1997
    • /
    • 2020
  • To support the safe operation of the Miniature Neutron Source Reactor (MNSR), a thermo-hydraulic transient model using the RELAP5/Mod3.2 code was simulated. The model was verified by comparing the results with the measured and the previously calculated data. The comparisons consisted of comparing the MNSR parameters under normal constant power operation and reactivity insertion transients. Reactivity Insertion Accident (RIA) for three different initial reactivity values of 3.6, 6.0, and 6.53 mk have been simulated. The calculated peaks of the reactor power, fuel, clad and coolant temperatures in hot channel were calculated in this model. The reactor power peaks were: 103 kW at 240 s, 174 kW at 160 s and 195 kW at 140 s, respectively. The fuel temperature reached its maximum value of 116 ℃ at 240 s, 124 ℃ at 160 s and 126 ℃ at 140 s respectively. These calculation results ensured the high inherently safety features of the MNSR under all phases of the RIAs.

Thermal Analysis of Exhaust Diffuser Cooling Channels for High Altitude Test of Rocket Engine (로켓엔진 고공환경 모사용 디퓨져의 냉각 채널 열 해석)

  • Cho, Kie-Joo;Kim, Yong-Wook;Kan, Sun-Il;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.193-197
    • /
    • 2010
  • Water cooling ducts are installed in the exhaust diffuser for high altitude tests of rocket engine to protect diffuser from high-temperature combustion gas. The mass flow rate and pressure of cooling water is designed to prevent boiling of cooling water in the ducts. Therefore, the estimation of maximum temperature of duct wall is important parameter in design of cooling system, especially pressure of cooling water. The method for predicting maximum temperatures of duct walls with variation of coolant flow rates was derived theoretically.

Breakdown Characteristics for Insulation Design of HTS Transformer in Liquid Nitrogen

  • J.M. Joung;S.M. Baek;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.38-42
    • /
    • 2003
  • HTS transformer is promising one of HTS power applications to be commercialized in the near future. To realize the applications, insulation technology in the coolant, liquid nitrogen, should be established. So breakdown characteristics should be considered at insulation components; turn-to-turn, layer-to-layer, winding-to-winding, were investigated. Firstly breakdown strengths of Kapton films were compared with Kraft paper these are as turn insulator. And next the characteristics of surface flashover on FRP were measured and the influence on breakdown strength of bubble generated with joule heat was discussed with the shape of cooling channel between layers. Finally barrier effect at winding-to-winding was discussed.

Mitigation of Flooding under Externally Imposed Oscillatory Gas Flow

  • Lee, Jae-Young;Chang, Jen-Shih
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.475-479
    • /
    • 1995
  • During the hypothetical loss of coolant accident in the nuclear power plant the emergency core cooling water could not penetrate to the reactor core when the steam flow rate from the reactor core exceeds CCFL (Countercurrent flow limitation). The CCFL generated by earlier investigators are developed under the steady gas flow. However the flow instability in the reactor loop could generate oscillatory steam flow, hence their applicability under oscillating flow should be investigated. In this work, an experimental investigation of countercurrent flow in the vertical flow channel has been conducted under oscillatory gas flow. Pulsation of gas under oscillatory flow disturbs the flow pattern significantly and prevents flooding (CCFL) when its minimum value is less than the threshold gas flow rate value.

  • PDF

Research on the Cooling Characteristics of Hot Stamping Process with Thermal Conductivity Die Steel (금형 열전도율에 따른 핫스탬핑 공정 냉각 특성 연구)

  • Lee, K.;Jung, M.U.;Seok, J.S.;Suh, C.H.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.171-176
    • /
    • 2018
  • In this study, the cooling characteristics of dies were investigated in the hot stamping process of front pillars for automobile. Two identical dies were manufactured out of tool steels with different thermal conductivities. The dies were designed with curved channels for uniform cooling of the blank. Computational fluid dynamics (CFD) simulations were also carried out, which can consider the heat transfer among the coolant, die, and blank. Measured and simulated thermal histories of dies were compared, and it was shown that high conductivity tool steel has an excellent cooling capacity compared to conventional tool steel.

Numerical Investigation of Cooling Performance of Liquid-cooled Battery in Electric Vehicles (하이브리드/전기 자동차용 수냉식 배터리 셀의 냉각성능에 관한 수치 해석적 연구)

  • Kwon, Hwabhin;Park, Heesung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.403-408
    • /
    • 2016
  • Lithium-ion batteries are commonly employed in hybrid electric vehicles (HEVs), and achieving high energy density in the battery has been one of the most critical issues in the automotive industry. Because liquid cooling containing antifreeze is important in automotive batteries to enable cold starts, an effective geometric configuration for high-cooling performance should be carefully investigated. Battery cooling with antifreeze has also been considered to realize successful cold starts. In this article, we theoretically investigate a specific property of an antifreeze cooling battery system, and we perform numerical modeling to satisfy the required thermal specifications. Because a typical battery system in HEVs consists of multiple stacked battery cells, the cooling performance is determined mainly by the special properties of antifreeze in the coolant passage, which dissipates heat generated from the battery cells. We propose that the required cooling performance can be realized by performing numerical simulations of different geometric configurations for battery cooling. Furthermore, we perform a theoretical analysis as a design guideline to optimize the cooling performance with minimum power consumption by the cooling pump.

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR (II) - THERMAL HYDRAULIC ANALYSIS AND SPENT FUEL CHARACTERISTICS

  • BAE KANG-MOK;HAN KYU-HYUN;KIM MYUNG-HYUN;CHANG SOON-HEUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.363-374
    • /
    • 2005
  • A heterogeneous thorium-based Kyung Hee Thorium Fuel (KTF) assembly design was assessed for application in the APR-1400 to study the feasibility of using thorium fuel in a conventional pressurized water reactor (PWR). Thermal hydraulic safety was examined for the thorium-based APR-1400 core, focusing on the Departure from Nucleate Boiling Ratio (DNBR) and Large Break Loss of Coolant Accident (LBLOCA) analysis. To satisfy the minimum DNBR (MDNBR) safety limit condition, MDNBR>1.3, a new grid design was adopted, that enabled grids in the seed and blanket assemblies to have different loss coefficients to the coolant flow. The fuel radius of the blanket was enlarged to increase the mass flow rate in the seed channel. Under transient conditions, the MDNBR values for the Beginning of Cycle (BOC), Middle of Cycle (MOC), and End of Cycle (EOC) were 1.367, 1.465, and 1.554, respectively, despite the high power tilt across the seed and blanket. Anticipated transient for the DNBR analysis were simulated at conditions of $112\%$ over-power, $95\%$ flow rate, and $2^{\circ}C$ higher inlet temperature. The maximum peak cladding temperature (PCT) was 1,173K for the severe accident condition of the LBLOCA, while the limit condition was 1,477K. The proliferation resistance potential of the thorium-based core was found to be much higher than that of the conventional $UO_2$ fuel core, $25\%$ larger in Bare Critical Mass (BCM), $60\%$ larger in Spontaneous Neutron Source (SNS), and $155\%$ larger in Thermal Generation (TG) rate; however, the radio-toxicity of the spent fuel was higher than that of $UO_2$ fuel, making it more environmentally unfriendly due to its high burnup rate.