• 제목/요약/키워드: Coolant Heater

검색결과 37건 처리시간 0.024초

Assessments of RELAP5/MOD3.2 and RELAP5/CANDU in a Reactor Inlet Header Break Experiment B9401 of RD-14M

  • Cho Yong Jin;Jeun Gyoo Dong
    • Nuclear Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.426-441
    • /
    • 2003
  • A reactor inlet header break experiment, B9401, performed in the RD-14M multi channel test facility was analyzed using RELAP5/MOD3.2 and RELAP5/CANDU[1]. The RELAP5 has been developed for the use in the analysis of the transient behavior of the pressurized water reactor. A recent study showed that the RELAP5 could be feasible even for the simulation of the thermal hydraulic behavior of CANDU reactors. However, some deficiencies in the prediction of fuel sheath temperature and transient behavior in athe headers were identified in the RELAP5 assessments. The RELAP5/CANDU has been developing to resolve the deficiencies in the RELAP5 and to improve the predictability of the thermal-hydraulic behaviors of the CANDU reactors. In the RELAP5/CANDU, critical heat flux model, horizontal flow regime map, heat transfer model in horizontal channel, etc. were modified or added to the RELAP5/MOD3.2. This study aims to identify the applicability of both codes, in particular, in the multi-channel simulation of the CANDU reactors. The RELAP5/MOD3.2 and the RELAP5/CANDU analyses demonstrate the code's capability to predict reasonably the major phenomena occurred during the transient. The thermal-hydraulic behaviors of both codes are almost identical, however, the RELAP5/CANDU predicts better the heater sheath temperature than the RELAP5/MOD3.2. Pressure differences between headers govern the flow characteristics through the heated sections, particularly after the ECI. In determining header pressure, there are many uncertainties arisen from the complicated effects including steady state pressure distribution. Therefore, it would be concluded that further works are required to reduce these uncertainties, and consequently predict appropriately thermal-hydraulic behaviors in the reactor coolant system during LOCA analyses.

DEVELOPMENT STATUS OF IRRADIATION DEVICES AND INSTRUMENTATION FOR MATERIAL AND NUCLEAR FUEL IRRADIATION TESTS IN HANARO

  • Kim, Bong-Goo;Sohn, Jae-Min;Choo, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.203-210
    • /
    • 2010
  • The $\underline{H}igh$ flux $\underline{A}dvanced$ $\underline{N}eutron$ $\underline{A}pplication$ $\underline{R}eact\underline{O}r$ (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests.

원자력 구조재 신뢰성 향상을 위한 열피로 균열 시험편 제작 기법 개발 (Development the Technique for Fabrication of the Thermal Fatigue Crack to Enhance the Reliability of Structural Component in NPPs)

  • 김용;김재성;이보영
    • Journal of Welding and Joining
    • /
    • 제26권2호
    • /
    • pp.43-49
    • /
    • 2008
  • Fatigue cracks due to thermal stratification or corrosion in pipelines of nuclear power plants can cause serious problems on reactor cooling system. Therefore, the development of an integrated technology including fabrication of standard specimens and their practical usage is needed to enhance the reliability of nondestructive testing. The test material was austenitic STS 304, which is used as pipelines in the Reactor Coolant System of a nuclear power plants. The best condition for fabrication of thermal fatigue cracks at the notch plate was selected using the thermal stress analysis of ANSYS. The specimen was installed from the tensile tester and underwent continuos tension loads of 51,000N. Then, after the specimen was heated to $450^{\circ}C$ for 1 minute using HF induction heater, it was cooled to $20^{\circ}C$ in 1 minute using a mixture of dry ice and water. The initial crack was generated at 17,000 cycles, 560 hours later (1cycle/2min.) and the depth of the thermal fatigue crack reached about 40% of the thickness of the specimen at 22,000 cycles. As a results of optical microscope and SEM analysis, it is confirmed that fabricated thermal fatigue cracks have the same characteristics as real fatigue cracks in nuclear power plants. The crack shape and size were identified.

초임계 $CO_2$의 헬리컬 코일관 내 열선단과 압력강하 특성 (Heat Transfer and Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube)

  • 유태근;김대희;손창효;오후규
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.353-358
    • /
    • 2005
  • The heat transfer and pressure drop of supercritical $CO_2$ cooled in a helically coiled tube was investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The experimental apparatus of the refrigerant loop consist of receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a helically coiled tube in tube counter flow heat exchanger with $CO_2$ flowed inside the inner tube and coolant( water) flowed along the outside annular passage, It was made of it copper tube with the inner diameter of 4.55[mm]. the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were $200^{\sim}600$ [kg/m2s] and the inlet pressure of gas cooler varied from 7.5 [MPa] to 10.0 [MPa]. The main results are summarized as follows : The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

핵융합로부품 시험을 위한 고열부하 시험시설 KoHLT-1 구축 (Development of a High Heat Load Test Facility KoHLT-1 for a Testing of Nuclear Fusion Reactor Components)

  • 배영덕;김석권;이동원;신희윤;홍봉근
    • 한국진공학회지
    • /
    • 제18권4호
    • /
    • pp.318-330
    • /
    • 2009
  • 본 한국원자력연구원에서는 국제열핵융합실험로(ITER)의 일차벽을 개발하기 위해 그라파이트 히터를 이용한 고열부하 시험시설 KoHLT-1(Korea Heat Load Test facility-1)을 구축하였으며, 현재 정상적으로 가동되고 있다. KoHLT-1의 주목적은 Be-CuCrZr-SS의 이종 금속이 HIP 방법에 의해 접합된 ITER 일차벽 mockup의 접합 건전성을 확인하는데 있다. KoHLT-1은 판형 그라파이트 히터, 냉각 jacket이 부착된 상자형 시험용기, 직류 전원, 냉각계통, He 기체 공급계통과 각종 진단계통으로 구성되어 있으며, 이 모든 시설은 Be 처리가 가능한 특수 정화계통이 설치된 실험실에 설치되었다. 그라파이트 히터는 두개의 시험 대상물 사이에 설치되며, 시험대상물과의 거리는 $2{\sim}3\;mm$이다. 시험 대상물의 크기와 요구되는 열유속에 따라 여러 가지의 그라파이트 히터를 설계, 제작하였으며, 전기 저항은 고온 운전 중에 $0.2{\sim}0.5{\Omega}$이 되도록 하였다. 히터는 100V/400 A의 직류전원에 연결되어 있으며, PC와 multi function module로 구성된 전류 조정계통에 의해 미리 프로그램되어 있는 패턴으로 전류를 자동 조절하게 된다. 두 시험대상물에 인가되는 열유속은 calorimetry법에 의해 냉각수의 입, 출구 온도와 유량을 측정하여 얻게 된다. 여러 가지 형태의 ITER 일차벽 Be mockups에 대해 고열부하 시험을 수행하였으며, 시험을 통하여 KoHLT-1 고열부하 시험 시설의 성능이 확인되었고, 24시간 이상의 연속 운전에 있어서도 그 신뢰성이 입증되었다.

가스엔진용 유기랭킨사이클의 설계 및 제작 (Design and Construction of a Bottoming Organic Rankine Cycle System for an Natural Gas Engine)

  • 이민석;백승동;성태홍;김현동;채정민;조영아;김형태;김경천
    • 한국가스학회지
    • /
    • 제20권6호
    • /
    • pp.65-72
    • /
    • 2016
  • 천연가스용으로 개조된 가스엔진에서 방출되는 폐열을 활용하기 위한 유기 랭킨사이클 (Organic Rankine Cycle: ORC) 발전시스템을 설계 및 제작하였다. 이 연구에서는 개조된 가스엔진의 폐열을 실험적으로 분석한 데이터를 바탕으로 구성한 ORC 시스템의 컴포넌트를 설계하고 제작하였다. ORC 시스템에는 2개의 판형 열교환기와 5kW급 팽창기, 다단 펌프가 사용되었으며, 전기 히터를 이용하여 ORC 시스템의 열역학적 성능을 분석하였다. 또한, 실제로 가스엔진과 연동하여 작동 특성을 파악하기 위한 실험을 수행하였다. ORC 시스템에 열량을 공급해주는 2대의 가스엔진을 사용하였다. 열원모사실험 결과, 열원온도 $110^{\circ}C$에서 축동력 5.22kW가 발생, 압력비 7.41, 열효율 9.09%가 계산되어졌으며, 엔진연동실험에서는 고온수 온도 $86^{\circ}C$에서 축동력 2kW가 발생, 이 때의 압력비는 3.75, 열효율 6.45%가 계산되었다.

HIGH HEAT FLUX TEST WITH HIP BONDED 35X35X3 BE/CU MOCKUPS FOR THE ITER BLANKET FIRST WALL

  • Lee, Dong-Won;Bae, Young-Dug;Kim, Suk-Kwon;Jung, Hyun-Kyu;Park, Jeong-Yong;Jeong, Yong-Hwan;Choi, Byung-Kwon;Kim, Byoung-Yoon
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.662-669
    • /
    • 2010
  • To develop the manufacturing methods for the blanket first wall (FW) of the International Thermonuclear Experimental Reactor (ITER) and to verify the integrity of the joint, Be/Cu mockups were fabricated and tested at the KoHLT-1 (Korea Heat Load Test facility), a graphite heater facility located at the Korea Atomic Energy Research Institute (KAERI). Since Be and Cu joining is the focus of the present study, the fabricated mockups had a CuCrZr heat sink joined with three Be tiles as an armor material, unlike the original ITER blanket FW, which has a stainless steel structure and coolant tubes. Hot isostatic pressing (HIP) was carried out at $580^{\circ}C$ and 100 MPa for 2 hours as the method for Be/Cu joining. Three interlayers, namely, $1{\mu}mCr/10{\mu}mCu$, $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$, and $5{\mu}mTi/10{\mu}mCu$ were applied as a coating to the Be tiles by a physical vapor deposition (PVD) method. A shear test was performed with the specimens, which were fabricated by the same methods as those used to fabricate the mockups. The average values were 125 MPa to 180 MPa, and the samples with the $1{\mu}mCr/10{\mu}mCu$ interlayer showed the lowest value. No defect or delamination was found in the joints of the mockups by the developed ultrasonic test using a flat-type probe with a 10 MHz frequency and a 0.25 inch diameter. High heat flux (HHF) tests were performed at $1.0\;MW/m^2$ heat flux for each mockup using the given conditions, and the results were analyzed by ANSYS-CFX code. For the test criteria, an expected fatigue lifetime about 1,000 cycles was obtained by analysis with ANSYS-mechanical code. Mockups using the interlayers of $1{\mu}mTi/0.5{\mu}mCr/10{\mu}mCu$ and $5{\mu}mTi/10{\mu}mCu$ survived up to 1,100 cycles over the required number of cycles. However, one of the Be tiles in the other two mockups using the $1{\mu}mCr/10{\mu}mCu$ interlayer was detached during the screening test, and others were detached by discharge after 862 cycles. The integrity of the joints using the proposed interlayers was proven by the HHF test, but the other interlayer requires more study before it can be used for the joining of Be to Cu. Moreover, it was confirmed that the measured temperatures agreed well with the analysis temperatures, which were used to estimate the lifetime and that the developed facility showed its capability of the long time operation.