• Title/Summary/Keyword: Cooked long-grain Jasmine rice

Search Result 1, Processing Time 0.018 seconds

Determining the Optimal Recipe for Long-Grain Jasmine Rice with Sea Tangle Laminaria japonica, and Its Effect on the Glycemic Index

  • Zeng, Jiting;Choi, Nam-Do;Ryu, Hong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.47-57
    • /
    • 2014
  • Thai Jasmine rice (Oryza sativa, long grain Indica var.) is popular in southeastern Asia and China due to its non-glutinous, fluffy texture and fragrant smell. However it has a high starch digestibility, which leads to an increased glycemic index (GI). Therefore it may require modified cooking methods for diabetes patients. The objectives of this study were to optimize the ratio of Thai Jasmine rice, sea tangle, and olive oil (CLTR) based on consumers' acceptance. The GI of plain cooked Thai Jasmine rice (CLR) was measured as a control. Sensory evaluation and response surface methodology were used to determine the optimal ratio. Texture analysis and nutritional evaluation were also performed on the optimal recipe of cooked Jasmine rice with sea tangle. A multiple regression equation was developed in quadratic canonical polynomial models. We used 26 trained Chinese panelists in their forties to rate color, flavor, adhesiveness, and glossiness, which we determined were highly correlated with overall acceptability. The optimal CLTR formula was 34.8% rice, 2.8% sea tangle, 61.9% water, and 0.5% olive oil. Compared to CLR, CLTR had a lower hardness, but a higher springiness and cohesiveness. However, CLR and CLTR had the same adhesiveness and chewiness. The addition of sea tangle and olive oil delayed retro-gradation of starch in CLTR and increased total dietary fiber, and protein and ash contents. The degree of gelatinization, and in vitro protein and starch digestibility of CLTR were lower than those of CLR. Based on Wolver' method, the GI of CLTR (52.9, incremental area under the glycemic-response curve, ignoring the area below fasting, as used for calculating the GI [Inc]) was lower compared with that of CLR (70.94, Inc), which indicates that CLTR is effective in decreasing and stabilizing blood glucose level, owing to its lower degree of gelatinization and starch digestibility. Our results show that CLTR can contribute to the development of a healthier meal for families and the fast food industry.