• 제목/요약/키워드: Convolutional neural net

검색결과 308건 처리시간 0.031초

잡음제거 합성곱 신경망을 이용한 이미지 복원방법 (Image Restoration Method using Denoising CNN)

  • 김선재;이정호;이석환;전동산
    • 한국멀티미디어학회논문지
    • /
    • 제25권1호
    • /
    • pp.29-38
    • /
    • 2022
  • Although image compression is one of the essential technologies to transmit image data on a variety of surveillance and mobile healthcare applications, it causes unnecessary compression artifacts such as blocking and ringing artifacts by the lossy compression in the limited network bandwidth. Recently, image restoration methods using convolutional neural network (CNN) show the significant improvement of image quality from the compressed images. In this paper, we propose Image Denoising Convolutional Neural Networks (IDCNN) to reduce the compression artifacts for the purpose of improving the performance of object classification. In order to evaluate the classification accuracy, we used the ImageNet test dataset consisting of 50,000 natural images and measured the classification performance in terms of Top-1 and Top-5 accuracy. Experimental results show that the proposed IDCNN can improve Top-1 and Top-5 accuracy as high as 2.46% and 2.42%, respectively.

합성곱신경망을 활용한 과구동기 시스템을 가지는 소형 무인선의 추진기 고장 감지 (Fault Detection of Propeller of an Overactuated Unmanned Surface Vehicle based on Convolutional Neural Network)

  • 백승대;우주현
    • 대한조선학회논문집
    • /
    • 제59권2호
    • /
    • pp.125-133
    • /
    • 2022
  • This paper proposes a fault detection method for a Unmanned Surface Vehicle (USV) with overactuated system. Current status information for fault detection is expressed as a scalogram image. The scalogram image is obtained by wavelet-transforming the USV's control input and sensor information. The fault detection scheme is based on Convolutional Neural Network (CNN) algorithm. The previously generated scalogram data was transferred learning to GoogLeNet algorithm. The data are generated as scalogram images in real time, and fault is detected through a learning model. The result of fault detection is very robust and highly accurate.

저연산량의 효율적인 콘볼루션 신경망 (Efficient Convolutional Neural Network with low Complexity)

  • 이찬호;이중경;호콩안
    • 전기전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.685-690
    • /
    • 2020
  • 휴대용 기기나 에지 단말을 위한 CNN인 MobileNet V2를 기반으로 연산량을 크게 줄이면서도 정확도는 증가시킨 효율적인 인공신경망 네트워크 구조를 제안한다. 제안하는 구조는 Bottleneck 층 구조를 유지하면서 확장 계수를 증가시키고 일부 층을 제거하는 등의 변화를 통해 연산량을 절반 이하로 줄였다. 설계한 네트워크는 ImageNet100 데이터셋을 이용하여 분류 정확도와 CPU 및 GPU에서의 연산 시간을 측정하여 그 성능을 검증 하였다. 또한, 현재 딥러닝 가속기로 널리 이용하는 GPU에서 네트워크 구조에 따라 동작 성능이 달라짐도 보였다.

컨볼루션 신경망 모델을 이용한 분류에서 입력 영상의 종류가 정확도에 미치는 영향 (The Effect of Type of Input Image on Accuracy in Classification Using Convolutional Neural Network Model)

  • 김민정;김정훈;박지은;정우연;이종민
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권4호
    • /
    • pp.167-174
    • /
    • 2021
  • The purpose of this study is to classify TIFF images, PNG images, and JPEG images using deep learning, and to compare the accuracy by verifying the classification performance. The TIFF, PNG, and JPEG images converted from chest X-ray DICOM images were applied to five deep neural network models performed in image recognition and classification to compare classification performance. The data consisted of a total of 4,000 X-ray images, which were converted from DICOM images into 16-bit TIFF images and 8-bit PNG and JPEG images. The learning models are CNN models - VGG16, ResNet50, InceptionV3, DenseNet121, and EfficientNetB0. The accuracy of the five convolutional neural network models of TIFF images is 99.86%, 99.86%, 99.99%, 100%, and 99.89%. The accuracy of PNG images is 99.88%, 100%, 99.97%, 99.87%, and 100%. The accuracy of JPEG images is 100%, 100%, 99.96%, 99.89%, and 100%. Validation of classification performance using test data showed 100% in accuracy, precision, recall and F1 score. Our classification results show that when DICOM images are converted to TIFF, PNG, and JPEG images and learned through preprocessing, the learning works well in all formats. In medical imaging research using deep learning, the classification performance is not affected by converting DICOM images into any format.

CCTV 영상의 이상행동 다중 분류를 위한 결합 인공지능 모델에 관한 연구 (A Study on Combine Artificial Intelligence Models for multi-classification for an Abnormal Behaviors in CCTV images)

  • 이홍래;김영태;서병석
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.498-500
    • /
    • 2022
  • CCTV는 위험 상황을 파악하고 신속히 대응함으로써, 인명과 자산을 안전하게 보호한다. 하지만, 점점 많아지는 CCTV 영상을 지속적으로 모니터링하기는 어렵다. 이런 이유로 CCTV 영상을 지속적으로 모니터링하면서 이상행동이 발생했을 때 알려주는 장치가 필요하다. 최근 영상데이터 분석에 인공지능 모델을 활용한 많은 연구가 이루어지고 있다. 본 연구는 CCTV 영상에서 관측할 수 있는 다양한 이상 행동을 분류하기 위해 영상데이터 사이의 공간적, 시간적 특성 정보를 동시에 학습한다. 학습에 이용되는 인공지능 모델로 End-to-End 방식의 3D-Convolution Neural Network(CNN)와 ResNet을 결합한 다중 분류 딥러닝 모델을 제안한다.

  • PDF

Two-Stream Convolutional Neural Network for Video Action Recognition

  • Qiao, Han;Liu, Shuang;Xu, Qingzhen;Liu, Shouqiang;Yang, Wanggan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권10호
    • /
    • pp.3668-3684
    • /
    • 2021
  • Video action recognition is widely used in video surveillance, behavior detection, human-computer interaction, medically assisted diagnosis and motion analysis. However, video action recognition can be disturbed by many factors, such as background, illumination and so on. Two-stream convolutional neural network uses the video spatial and temporal models to train separately, and performs fusion at the output end. The multi segment Two-Stream convolutional neural network model trains temporal and spatial information from the video to extract their feature and fuse them, then determine the category of video action. Google Xception model and the transfer learning is adopted in this paper, and the Xception model which trained on ImageNet is used as the initial weight. It greatly overcomes the problem of model underfitting caused by insufficient video behavior dataset, and it can effectively reduce the influence of various factors in the video. This way also greatly improves the accuracy and reduces the training time. What's more, to make up for the shortage of dataset, the kinetics400 dataset was used for pre-training, which greatly improved the accuracy of the model. In this applied research, through continuous efforts, the expected goal is basically achieved, and according to the study and research, the design of the original dual-flow model is improved.

Pipeline wall thinning rate prediction model based on machine learning

  • Moon, Seongin;Kim, Kyungmo;Lee, Gyeong-Geun;Yu, Yongkyun;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4060-4066
    • /
    • 2021
  • Flow-accelerated corrosion (FAC) of carbon steel piping is a significant problem in nuclear power plants. The basic process of FAC is currently understood relatively well; however, the accuracy of prediction models of the wall-thinning rate under an FAC environment is not reliable. Herein, we propose a methodology to construct pipe wall-thinning rate prediction models using artificial neural networks and a convolutional neural network, which is confined to a straight pipe without geometric changes. Furthermore, a methodology to generate training data is proposed to efficiently train the neural network for the development of a machine learning-based FAC prediction model. Consequently, it is concluded that machine learning can be used to construct pipe wall thinning rate prediction models and optimize the number of training datasets for training the machine learning algorithm. The proposed methodology can be applied to efficiently generate a large dataset from an FAC test to develop a wall thinning rate prediction model for a real situation.

비주얼 검색을 위한 위키피디아 기반의 질의어 추출 (Keyword Selection for Visual Search based on Wikipedia)

  • 김종우;조수선
    • 한국멀티미디어학회논문지
    • /
    • 제21권8호
    • /
    • pp.960-968
    • /
    • 2018
  • The mobile visual search service uses a query image to acquire linkage information through pre-constructed DB search. From the standpoint of this purpose, it would be more useful if you could perform a search on a web-based keyword search system instead of a pre-built DB search. In this paper, we propose a representative query extraction algorithm to be used as a keyword on a web-based search system. To do this, we use image classification labels generated by the CNN (Convolutional Neural Network) algorithm based on Deep Learning, which has a remarkable performance in image recognition. In the query extraction algorithm, dictionary meaningful words are extracted using Wikipedia, and hierarchical categories are constructed using WordNet. The performance of the proposed algorithm is evaluated by measuring the system response time.

Automatic Volumetric Brain Tumor Segmentation using Convolutional Neural Networks

  • Yavorskyi, Vladyslav;Sull, Sanghoon
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.432-435
    • /
    • 2019
  • Convolutional Neural Networks (CNNs) have recently been gaining popularity in the medical image analysis field because of their image segmentation capabilities. In this paper, we present a CNN that performs automated brain tumor segmentations of sparsely annotated 3D Magnetic Resonance Imaging (MRI) scans. Our CNN is based on 3D U-net architecture, and it includes separate Dilated and Depth-wise Convolutions. It is fully-trained on the BraTS 2018 data set, and it produces more accurate results even when compared to the winners of the BraTS 2017 competition despite having a significantly smaller amount of parameters.

  • PDF

An Optimized Deep Learning Techniques for Analyzing Mammograms

  • Satish Babu Bandaru;Natarajasivan. D;Rama Mohan Babu. G
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.39-48
    • /
    • 2023
  • Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.