• Title/Summary/Keyword: Convolutional Neural Networks

Search Result 666, Processing Time 0.024 seconds

Dilated convolution and gated linear unit based sound event detection and tagging algorithm using weak label (약한 레이블을 이용한 확장 합성곱 신경망과 게이트 선형 유닛 기반 음향 이벤트 검출 및 태깅 알고리즘)

  • Park, Chungho;Kim, Donghyun;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.414-423
    • /
    • 2020
  • In this paper, we propose a Dilated Convolution Gate Linear Unit (DCGLU) to mitigate the lack of sparsity and small receptive field problems caused by the segmentation map extraction process in sound event detection with weak labels. In the advent of deep learning framework, segmentation map extraction approaches have shown improved performance in noisy environments. However, these methods are forced to maintain the size of the feature map to extract the segmentation map as the model would be constructed without a pooling operation. As a result, the performance of these methods is deteriorated with a lack of sparsity and a small receptive field. To mitigate these problems, we utilize GLU to control the flow of information and Dilated Convolutional Neural Networks (DCNNs) to increase the receptive field without additional learning parameters. For the performance evaluation, we employ a URBAN-SED and self-organized bird sound dataset. The relevant experiments show that our proposed DCGLU model outperforms over other baselines. In particular, our method is shown to exhibit robustness against nature sound noises with three Signal to Noise Ratio (SNR) levels (20 dB, 10 dB and 0 dB).

Tomato Crop Diseases Classification Models Using Deep CNN-based Architectures (심층 CNN 기반 구조를 이용한 토마토 작물 병해충 분류 모델)

  • Kim, Sam-Keun;Ahn, Jae-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.7-14
    • /
    • 2021
  • Tomato crops are highly affected by tomato diseases, and if not prevented, a disease can cause severe losses for the agricultural economy. Therefore, there is a need for a system that quickly and accurately diagnoses various tomato diseases. In this paper, we propose a system that classifies nine diseases as well as healthy tomato plants by applying various pretrained deep learning-based CNN models trained on an ImageNet dataset. The tomato leaf image dataset obtained from PlantVillage is provided as input to ResNet, Xception, and DenseNet, which have deep learning-based CNN architectures. The proposed models were constructed by adding a top-level classifier to the basic CNN model, and they were trained by applying a 5-fold cross-validation strategy. All three of the proposed models were trained in two stages: transfer learning (which freezes the layers of the basic CNN model and then trains only the top-level classifiers), and fine-tuned learning (which sets the learning rate to a very small number and trains after unfreezing basic CNN layers). SGD, RMSprop, and Adam were applied as optimization algorithms. The experimental results show that the DenseNet CNN model to which the RMSprop algorithm was applied output the best results, with 98.63% accuracy.

A Study on the Improvement of Source Code Static Analysis Using Machine Learning (기계학습을 이용한 소스코드 정적 분석 개선에 관한 연구)

  • Park, Yang-Hwan;Choi, Jin-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1131-1139
    • /
    • 2020
  • The static analysis of the source code is to find the remaining security weaknesses for a wide range of source codes. The static analysis tool is used to check the result, and the static analysis expert performs spying and false detection analysis on the result. In this process, the amount of analysis is large and the rate of false positives is high, so a lot of time and effort is required, and a method of efficient analysis is required. In addition, it is rare for experts to analyze only the source code of the line where the defect occurred when performing positive/false detection analysis. Depending on the type of defect, the surrounding source code is analyzed together and the final analysis result is delivered. In order to solve the difficulty of experts discriminating positive and false positives using these static analysis tools, this paper proposes a method of determining whether or not the security weakness found by the static analysis tools is a spy detection through artificial intelligence rather than an expert. In addition, the optimal size was confirmed through an experiment to see how the size of the training data (source code around the defects) used for such machine learning affects the performance. This result is expected to help the static analysis expert's job of classifying positive and false positives after static analysis.

Image-Based Automatic Bridge Component Classification Using Deep Learning (딥러닝을 활용한 이미지 기반 교량 구성요소 자동분류 네트워크 개발)

  • Cho, Munwon;Lee, Jae Hyuk;Ryu, Young-Moo;Park, Jeongjun;Yoon, Hyungchul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.751-760
    • /
    • 2021
  • Most bridges in Korea are over 20 years old, and many problems linked to their deterioration are being reported. The current practice for bridge inspection mainly depends on expert evaluation, which can be subjective. Recent studies have introduced data-driven methods using building information modeling, which can be more efficient and objective, but these methods require manual procedures that consume time and money. To overcome this, this study developed an image-based automaticbridge component classification network to reduce the time and cost required for converting the visual information of bridges to a digital model. The proposed method comprises two convolutional neural networks. The first network estimates the type of the bridge based on the superstructure, and the second network classifies the bridge components. In avalidation test, the proposed system automatically classified the components of 461 bridge images with 96.6 % of accuracy. The proposed approach is expected to contribute toward current bridge maintenance practice.

Contactless User Identification System using Multi-channel Palm Images Facilitated by Triple Attention U-Net and CNN Classifier Ensemble Models

  • Kim, Inki;Kim, Beomjun;Woo, Sunghee;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.33-43
    • /
    • 2022
  • In this paper, we propose an ensemble model facilitated by multi-channel palm images with attention U-Net models and pretrained convolutional neural networks (CNNs) for establishing a contactless palm-based user identification system using conventional inexpensive camera sensors. Attention U-Net models are used to extract the areas of interest including hands (i.e., with fingers), palms (i.e., without fingers) and palm lines, which are combined to generate three channels being ped into the ensemble classifier. Then, the proposed palm information-based user identification system predicts the class using the classifier ensemble with three outperforming pre-trained CNN models. The proposed model demonstrates that the proposed model could achieve the classification accuracy, precision, recall, F1-score of 98.60%, 98.61%, 98.61%, 98.61% respectively, which indicate that the proposed model is effective even though we are using very cheap and inexpensive image sensors. We believe that in this COVID-19 pandemic circumstances, the proposed palm-based contactless user identification system can be an alternative, with high safety and reliability, compared with currently overwhelming contact-based systems.

Distracted Driver Detection and Characteristic Area Localization by Combining CAM-Based Hierarchical and Horizontal Classification Models (CAM 기반의 계층적 및 수평적 분류 모델을 결합한 운전자 부주의 검출 및 특징 영역 지역화)

  • Go, Sooyeon;Choi, Yeongwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.11
    • /
    • pp.439-448
    • /
    • 2021
  • Driver negligence accounts for the largest proportion of the causes of traffic accidents, and research to detect them is continuously being conducted. This paper proposes a method to accurately detect a distracted driver and localize the most characteristic parts of the driver. The proposed method hierarchically constructs a CNN basic model that classifies 10 classes based on CAM in order to detect driver distration and 4 subclass models for detailed classification of classes having a confusing or common feature area in this model. The classification result output from each model can be considered as a new feature indicating the degree of matching with the CNN feature maps, and the accuracy of classification is improved by horizontally combining and learning them. In addition, by combining the heat map results reflecting the classification results of the basic and detailed classification models, the characteristic areas of attention in the image are found. The proposed method obtained an accuracy of 95.14% in an experiment using the State Farm data set, which is 2.94% higher than the 92.2%, which is the highest accuracy among the results using this data set. Also, it was confirmed by the experiment that more meaningful and accurate attention areas were found than the results of the attention area found when only the basic model was used.

Detection of Proximal Caries Lesions with Deep Learning Algorithm (심층학습 알고리즘을 활용한 인접면 우식 탐지)

  • Hyuntae, Kim;Ji-Soo, Song;Teo Jeon, Shin;Hong-Keun, Hyun;Jung-Wook, Kim;Ki-Taeg, Jang;Young-Jae, Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.131-139
    • /
    • 2022
  • This study aimed to evaluate the effectiveness of deep convolutional neural networks (CNNs) for diagnosis of interproximal caries in pediatric intraoral radiographs. A total of 500 intraoral radiographic images of first and second primary molars were used for the study. A CNN model (Resnet 50) was applied for the detection of proximal caries. The diagnostic accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curve, and area under ROC curve (AUC) were calculated on the test dataset. The diagnostic accuracy was 0.84, sensitivity was 0.74, and specificity was 0.94. The trained CNN algorithm achieved AUC of 0.86. The diagnostic CNN model for pediatric intraoral radiographs showed good performance with high accuracy. Deep learning can assist dentists in diagnosis of proximal caries lesions in pediatric intraoral radiographs.

Chest CT Image Patch-Based CNN Classification and Visualization for Predicting Recurrence of Non-Small Cell Lung Cancer Patients (비소세포폐암 환자의 재발 예측을 위한 흉부 CT 영상 패치 기반 CNN 분류 및 시각화)

  • Ma, Serie;Ahn, Gahee;Hong, Helen
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Non-small cell lung cancer (NSCLC) accounts for a high proportion of 85% among all lung cancer and has a significantly higher mortality rate (22.7%) compared to other cancers. Therefore, it is very important to predict the prognosis after surgery in patients with non-small cell lung cancer. In this study, the types of preoperative chest CT image patches for non-small cell lung cancer patients with tumor as a region of interest are diversified into five types according to tumor-related information, and performance of single classifier model, ensemble classifier model with soft-voting method, and ensemble classifier model using 3 input channels for combination of three different patches using pre-trained ResNet and EfficientNet CNN networks are analyzed through misclassification cases and Grad-CAM visualization. As a result of the experiment, the ResNet152 single model and the EfficientNet-b7 single model trained on the peritumoral patch showed accuracy of 87.93% and 81.03%, respectively. In addition, ResNet152 ensemble model using the image, peritumoral, and shape-focused intratumoral patches which were placed in each input channels showed stable performance with an accuracy of 87.93%. Also, EfficientNet-b7 ensemble classifier model with soft-voting method using the image and peritumoral patches showed accuracy of 84.48%.

Improvements in Patch-Based Machine Learning for Analyzing Three-Dimensional Seismic Sequence Data (3차원 탄성파자료의 층서구분을 위한 패치기반 기계학습 방법의 개선)

  • Lee, Donguk;Moon, Hye-Jin;Kim, Chung-Ho;Moon, Seonghoon;Lee, Su Hwan;Jou, Hyeong-Tae
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.2
    • /
    • pp.59-70
    • /
    • 2022
  • Recent studies demonstrate that machine learning has expanded in the field of seismic interpretation. Many convolutional neural networks have been developed for seismic sequence identification, which is important for seismic interpretation. However, expense and time limitations indicate that there is insufficient data available to provide a sufficient dataset to train supervised machine learning programs to identify seismic sequences. In this study, patch division and data augmentation are applied to mitigate this lack of data. Furthermore, to obtain spatial information that could be lost during patch division, an artificial channel is added to the original data to indicate depth. Seismic sequence identification is performed using a U-Net network and the Netherlands F3 block dataset from the dGB Open Seismic Repository, which offers datasets for machine learning, and the predicted results are evaluated. The results show that patch-based U-Net seismic sequence identification is improved by data augmentation and the addition of an artificial channel.

Deep learning algorithms for identifying 79 dental implant types (79종의 임플란트 식별을 위한 딥러닝 알고리즘)

  • Hyun-Jun, Kong;Jin-Yong, Yoo;Sang-Ho, Eom;Jun-Hyeok, Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.4
    • /
    • pp.196-203
    • /
    • 2022
  • Purpose: This study aimed to evaluate the accuracy and clinical usability of an identification model using deep learning for 79 dental implant types. Materials and Methods: A total of 45396 implant fixture images were collected through panoramic radiographs of patients who received implant treatment from 2001 to 2020 at 30 dental clinics. The collected implant images were 79 types from 18 manufacturers. EfficientNet and Meta Pseudo Labels algorithms were used. For EfficientNet, EfficientNet-B0 and EfficientNet-B4 were used as submodels. For Meta Pseudo Labels, two models were applied according to the widen factor. Top 1 accuracy was measured for EfficientNet and top 1 and top 5 accuracy for Meta Pseudo Labels were measured. Results: EfficientNet-B0 and EfficientNet-B4 showed top 1 accuracy of 89.4. Meta Pseudo Labels 1 showed top 1 accuracy of 87.96, and Meta pseudo labels 2 with increased widen factor showed 88.35. In Top5 Accuracy, the score of Meta Pseudo Labels 1 was 97.90, which was 0.11% higher than 97.79 of Meta Pseudo Labels 2. Conclusion: All four deep learning algorithms used for implant identification in this study showed close to 90% accuracy. In order to increase the clinical applicability of deep learning for implant identification, it will be necessary to collect a wider amount of data and develop a fine-tuned algorithm for implant identification.