• Title/Summary/Keyword: Convolutional Neural Networks

검색결과 666건 처리시간 0.027초

POI Recommendation Method Based on Multi-Source Information Fusion Using Deep Learning in Location-Based Social Networks

  • Sun, Liqiang
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.352-368
    • /
    • 2021
  • Sign-in point of interest (POI) are extremely sparse in location-based social networks, hindering recommendation systems from capturing users' deep-level preferences. To solve this problem, we propose a content-aware POI recommendation algorithm based on a convolutional neural network. First, using convolutional neural networks to process comment text information, we model location POI and user latent factors. Subsequently, the objective function is constructed by fusing users' geographical information and obtaining the emotional category information. In addition, the objective function comprises matrix decomposition and maximisation of the probability objective function. Finally, we solve the objective function efficiently. The prediction rate and F1 value on the Instagram-NewYork dataset are 78.32% and 76.37%, respectively, and those on the Instagram-Chicago dataset are 85.16% and 83.29%, respectively. Comparative experiments show that the proposed method can obtain a higher precision rate than several other newer recommended methods.

CNN 기반 인간 동작 인식을 위한 생체신호 데이터의 증강 기법 (Bio-signal Data Augumentation Technique for CNN based Human Activity Recognition)

  • 게렐바트;권춘기
    • 융합신호처리학회논문지
    • /
    • 제24권2호
    • /
    • pp.90-96
    • /
    • 2023
  • 합성곱 신경망을 비롯하여 딥러닝 신경망의 학습에서 많은 양의 훈련데이터의 확보는 과적합 현상을 피하고 우수한 성능을 가지기 위해서 매우 중요하다. 하지만, 딥러닝 신경망에서의 레이블화된 훈련데이터의 확보는 실제로는 매우 제한적이다. 이를 극복하기 위해, 이미 획득한 훈련데이터를 변형, 조작 등으로 추가로 훈련데이터를 생성하는 여러 증강 방법이 제안되었다. 하지만, 이미지, 문자 등의 훈련데이터와 달리, 인간 동작 인식을 행하는 합성곱 신경망의 생체신호 훈련데이터를 추가로 생성하는 증강 방법은 연구 문헌에서 찾아보기 어렵다. 본 연구에서는 합성곱 신경망에 기반한 인간 동작 인식을 위한 생체신호 훈련데이터를 생성하는 간편하지만, 효과적인 증강 방법을 제안한다. 본 연구의 제안된 증강 방법의 유용성은 추가로 생성된 생체신호 훈련데이터로 학습하여 합성곱 신경망이 인간 동작을 높은 정확도로 인식하는 것을 보임으로써 검증하였다.

얼굴 표정 인식을 위한 Convolutional Neural Networks (Convolutional Neural Networks for Facial Expression Recognition)

  • 최인규;송혁;유지상
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2016년도 추계학술대회
    • /
    • pp.17-18
    • /
    • 2016
  • 본 논문에서는 딥러닝 기술 중의 하나인 CNN(Convolutional Neural Network) 기반의 얼굴 표정 인식 기법을 제안한다. 제안한 기법에서는 획득한 여섯 가지 주요 표정의 얼굴영상들을 학습 데이터로 이용할 때 분류 성능을 저해시키는 과적합(over-fitting) 문제를 해결하기 위해서 데이터 증대 기법(data augmentation)을 적용한다. 또한 기존의 CNN 구조에서 convolutional layer 및 node의 수를 변경하여 학습 파라미터 수를 대폭 감소시킬 수 있다. 실험 결과 제안하는 데이터 증대 기법 및 개선한 구조가 높은 얼굴 표정 분류 성능을 보여준다는 것을 확인하였다.

  • PDF

심층 합성곱 신경망을 이용한 교통신호등 인식 (Traffic Light Recognition Using a Deep Convolutional Neural Network)

  • 김민기
    • 한국멀티미디어학회논문지
    • /
    • 제21권11호
    • /
    • pp.1244-1253
    • /
    • 2018
  • The color of traffic light is sensitive to various illumination conditions. Especially it loses the hue information when oversaturation happens on the lighting area. This paper proposes a traffic light recognition method robust to these illumination variations. The method consists of two steps of traffic light detection and recognition. It just uses the intensity and saturation in the first step of traffic light detection. It delays the use of hue information until it reaches to the second step of recognizing the signal of traffic light. We utilized a deep learning technique in the second step. We designed a deep convolutional neural network(DCNN) which is composed of three convolutional networks and two fully connected networks. 12 video clips were used to evaluate the performance of the proposed method. Experimental results show the performance of traffic light detection reporting the precision of 93.9%, the recall of 91.6%, and the recognition accuracy of 89.4%. Considering that the maximum distance between the camera and traffic lights is 70m, the results shows that the proposed method is effective.

Localization of ripe tomato bunch using deep neural networks and class activation mapping

  • Seung-Woo Kang;Soo-Hyun Cho;Dae-Hyun Lee;Kyung-Chul Kim
    • 농업과학연구
    • /
    • 제50권3호
    • /
    • pp.399-406
    • /
    • 2023
  • In this study, we propose a ripe tomato bunch localization method based on convolutional neural networks, to be applied in robotic harvesting systems. Tomato images were obtained from a smart greenhouse at the Rural Development Administration (RDA). The sample images for training were extracted based on tomato maturity and resized to 128 × 128 pixels for use in the classification model. The model was constructed based on four-layer convolutional neural networks, and the classes were determined based on stage of maturity, using a Softmax classifier. The localization of the ripe tomato bunch region was indicated on a class activation map. The class activation map could show the approximate location of the tomato bunch but tends to present a local part or a large part of the ripe tomato bunch region, which could lead to poor performance. Therefore, we suggest a recursive method to improve the performance of the model. The classification results indicated that the accuracy, precision, recall, and F1-score were 0.98, 0.87, 0.98, and 0.92, respectively. The localization performance was 0.52, estimated by the Intersection over Union (IoU), and through input recursion, the IoU was improved by 13%. Based on the results, the proposed localization of the ripe tomato bunch area can be incorporated in robotic harvesting systems to establish the optimal harvesting paths.

결합된 파라메트릭 활성함수를 이용한 합성곱 신경망의 성능 향상 (Performance Improvement Method of Convolutional Neural Network Using Combined Parametric Activation Functions)

  • 고영민;이붕항;고선우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권9호
    • /
    • pp.371-380
    • /
    • 2022
  • 합성곱 신경망은 이미지와 같은 격자 형태로 배열된 데이터를 다루는데 널리 사용되고 있는 신경망이다. 일반적인 합성곱 신경망은 합성곱층과 완전연결층으로 구성되며 각 층은 비선형활성함수를 포함하고 있다. 본 논문은 합성곱 신경망의 성능을 향상시키기 위해 결합된 파라메트릭 활성함수를 제안한다. 결합된 파라메트릭 활성함수는 활성함수의 크기와 위치를 변환시키는 파라미터를 적용한 파라메트릭 활성함수들을 여러 번 더하여 만들어진다. 여러 개의 크기, 위치를 변환하는 파라미터에 따라 다양한 비선형간격을 만들 수 있으며, 파라미터는 주어진 입력데이터에 의해 계산된 손실함수를 최소화하는 방향으로 학습할 수 있다. 결합된 파라메트릭 활성함수를 사용한 합성곱 신경망의 성능을 MNIST, Fashion MNIST, CIFAR10 그리고 CIFAR100 분류문제에 대해 실험한 결과, 다른 활성함수들보다 우수한 성능을 가짐을 확인하였다.

컬러 입력 영상을 갖는 Convolutional Neural Networks를 이용한 QFN 납땜 불량 검출 (QFN Solder Defect Detection Using Convolutional Neural Networks with Color Input Images)

  • 김호중;조태훈
    • 반도체디스플레이기술학회지
    • /
    • 제15권3호
    • /
    • pp.18-23
    • /
    • 2016
  • QFN (Quad Flat No-leads Package) is one of the SMD (Surface Mount Device). Since there is no lead in QFN, there are many defects on solder. Therefore, we propose an efficient mechanism for QFN solder defect detection at this paper. For this, we employ Convolutional Neural Network (CNN) of the Machine Learning algorithm. QFN solder's color multi-layer images are used to train CNN. Since these images are 3-channel color images, they have a problem with applying to CNN. To solve this problem, we used each 1-channel grayscale image (Red, Green, Blue) that was separated from 3-channel color images. We were able to detect QFN solder defects by using this CNN. In this paper, it is shown that the CNN is superior to the conventional multi-layer neural networks in detecting QFN solder defects. Later, further research is needed to detect other QFN.

Deep learning convolutional neural network algorithms for the early detection and diagnosis of dental caries on periapical radiographs: A systematic review

  • Musri, Nabilla;Christie, Brenda;Ichwan, Solachuddin Jauhari Arief;Cahyanto, Arief
    • Imaging Science in Dentistry
    • /
    • 제51권3호
    • /
    • pp.237-242
    • /
    • 2021
  • Purpose: The aim of this study was to analyse and review deep learning convolutional neural networks for detecting and diagnosing early-stage dental caries on periapical radiographs. Materials and Methods: In order to conduct this review, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) guidelines were followed. Studies published from 2015 to 2021 under the keywords(deep convolutional neural network) AND (caries), (deep learning caries) AND (convolutional neural network) AND (caries) were systematically reviewed. Results: When dental caries is improperly diagnosed, the lesion may eventually invade the enamel, dentin, and pulp tissue, leading to loss of tooth function. Rapid and precise detection and diagnosis are vital for implementing appropriate prevention and treatment of dental caries. Radiography and intraoral images are considered to play a vital role in detecting dental caries; nevertheless, studies have shown that 20% of suspicious areas are mistakenly diagnosed as dental caries using this technique; hence, diagnosis via radiography alone without an objective assessment is inaccurate. Identifying caries with a deep convolutional neural network-based detector enables the operator to distinguish changes in the location and morphological features of dental caries lesions. Deep learning algorithms have broader and more profound layers and are continually being developed, remarkably enhancing their precision in detecting and segmenting objects. Conclusion: Clinical applications of deep learning convolutional neural networks in the dental field have shown significant accuracy in detecting and diagnosing dental caries, and these models hold promise in supporting dental practitioners to improve patient outcomes.

Introduction to convolutional neural network using Keras; an understanding from a statistician

  • Lee, Hagyeong;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제26권6호
    • /
    • pp.591-610
    • /
    • 2019
  • Deep Learning is one of the machine learning methods to find features from a huge data using non-linear transformation. It is now commonly used for supervised learning in many fields. In particular, Convolutional Neural Network (CNN) is the best technique for the image classification since 2012. For users who consider deep learning models for real-world applications, Keras is a popular API for neural networks written in Python and also can be used in R. We try examine the parameter estimation procedures of Deep Neural Network and structures of CNN models from basics to advanced techniques. We also try to figure out some crucial steps in CNN that can improve image classification performance in the CIFAR10 dataset using Keras. We found that several stacks of convolutional layers and batch normalization could improve prediction performance. We also compared image classification performances with other machine learning methods, including K-Nearest Neighbors (K-NN), Random Forest, and XGBoost, in both MNIST and CIFAR10 dataset.

Comparative Study of Ship Image Classification using Feedforward Neural Network and Convolutional Neural Network

  • Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권3호
    • /
    • pp.221-227
    • /
    • 2024
  • In autonomous navigation systems, the need for fast and accurate image processing using deep learning and advanced sensor technologies is paramount. These systems rely heavily on the ability to process and interpret visual data swiftly and precisely to ensure safe and efficient navigation. Despite the critical importance of such capabilities, there has been a noticeable lack of research specifically focused on ship image classification for maritime applications. This gap highlights the necessity for more in-depth studies in this domain. In this paper, we aim to address this gap by presenting a comprehensive comparative study of ship image classification using two distinct neural network models: the Feedforward Neural Network (FNN) and the Convolutional Neural Network (CNN). Our study involves the application of both models to the task of classifying ship images, utilizing a dataset specifically prepared for this purpose. Through our analysis, we found that the Convolutional Neural Network demonstrates significantly more effective performance in accurately classifying ship images compared to the Feedforward Neural Network. The findings from this research are significant as they can contribute to the advancement of core source technologies for maritime autonomous navigation systems. By leveraging the superior image classification capabilities of convolutional neural networks, we can enhance the accuracy and reliability of these systems. This improvement is crucial for the development of more efficient and safer autonomous maritime operations, ultimately contributing to the broader field of autonomous transportation technology.