• 제목/요약/키워드: Convolutional Network (CNN)

검색결과 958건 처리시간 0.039초

A Deep Learning Approach for Identifying User Interest from Targeted Advertising

  • Kim, Wonkyung;Lee, Kukheon;Lee, Sangjin;Jeong, Doowon
    • Journal of Information Processing Systems
    • /
    • 제18권2호
    • /
    • pp.245-257
    • /
    • 2022
  • In the Internet of Things (IoT) era, the types of devices used by one user are becoming more diverse and the number of devices is also increasing. However, a forensic investigator is restricted to exploit or collect all the user's devices; there are legal issues (e.g., privacy, jurisdiction) and technical issues (e.g., computing resources, the increase in storage capacity). Therefore, in the digital forensics field, it has been a challenge to acquire information that remains on the devices that could not be collected, by analyzing the seized devices. In this study, we focus on the fact that multiple devices share data through account synchronization of the online platform. We propose a novel way of identifying the user's interest through analyzing the remnants of targeted advertising which is provided based on the visited websites or search terms of logged-in users. We introduce a detailed methodology to pick out the targeted advertising from cache data and infer the user's interest using deep learning. In this process, an improved learning model considering the unique characteristics of advertisement is implemented. The experimental result demonstrates that the proposed method can effectively identify the user interest even though only one device is examined.

딥러닝을 이용한 육불화텅스텐(WF6) 제조 공정의 지능형 영상 감지 시스템 구현 (Implementation of an Intelligent Video Detection System using Deep Learning in the Manufacturing Process of Tungsten Hexafluoride)

  • 손승용;김영목;최두현
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.719-726
    • /
    • 2021
  • Through the process of chemical vapor deposition, Tungsten Hexafluoride (WF6) is widely used by the semiconductor industry to form tungsten films. Tungsten Hexafluoride (WF6) is produced through manufacturing processes such as pulverization, wet smelting, calcination and reduction of tungsten ores. The manufacturing process of Tungsten Hexafluoride (WF6) is required thorough quality control to improve productivity. In this paper, a real-time detection system for oxidation defects that occur in the manufacturing process of Tungsten Hexafluoride (WF6) is proposed. The proposed system is implemented by applying YOLOv5 based on Convolutional Neural Network (CNN); it is expected to enable more stable management than existing management, which relies on skilled workers. The implementation method of the proposed system and the results of performance comparison are presented to prove the feasibility of the method for improving the efficiency of the WF6 manufacturing process in this paper. The proposed system applying YOLOv5s, which is the most suitable material in the actual production environment, demonstrates high accuracy (mAP@0.5 99.4 %) and real-time detection speed (FPS 46).

A Computerized Doughty Predictor Framework for Corona Virus Disease: Combined Deep Learning based Approach

  • P, Ramya;Babu S, Venkatesh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.2018-2043
    • /
    • 2022
  • Nowadays, COVID-19 infections are influencing our daily lives which have spread globally. The major symptoms' of COVID-19 are dry cough, sore throat, and fever which in turn to critical complications like multi organs failure, acute respiratory distress syndrome, etc. Therefore, to hinder the spread of COVID-19, a Computerized Doughty Predictor Framework (CDPF) is developed to yield benefits in monitoring the progression of disease from Chest CT images which will reduce the mortality rates significantly. The proposed framework CDPF employs Convolutional Neural Network (CNN) as a feature extractor to extract the features from CT images. Subsequently, the extracted features are fed into the Adaptive Dragonfly Algorithm (ADA) to extract the most significant features which will smoothly drive the diagnosing of the COVID and Non-COVID cases with the support of Doughty Learners (DL). This paper uses the publicly available SARS-CoV-2 and Github COVID CT dataset which contains 2482 and 812 CT images with two class labels COVID+ and COVI-. The performance of CDPF is evaluated against existing state of art approaches, which shows the superiority of CDPF with the diagnosis accuracy of about 99.76%.

Interpolation based Single-path Sub-pixel Convolution for Super-Resolution Multi-Scale Networks

  • Alao, Honnang;Kim, Jin-Sung;Kim, Tae Sung;Oh, Juhyen;Lee, Kyujoong
    • Journal of Multimedia Information System
    • /
    • 제8권4호
    • /
    • pp.203-210
    • /
    • 2021
  • Deep leaning convolutional neural networks (CNN) have successfully been applied to image super-resolution (SR). Despite their great performances, SR techniques tend to focus on a certain upscale factor when training a particular model. Algorithms for single model multi-scale networks can easily be constructed if images are upscaled prior to input, but sub-pixel convolution upsampling works differently for each scale factor. Recent SR methods employ multi-scale and multi-path learning as a solution. However, this causes unshared parameters and unbalanced parameter distribution across various scale factors. We present a multi-scale single-path upsample module as a solution by exploiting the advantages of sub-pixel convolution and interpolation algorithms. The proposed model employs sub-pixel convolution for the highest scale factor among the learning upscale factors, and then utilize 1-dimension interpolation, compressing the learned features on the channel axis to match the desired output image size. Experiments are performed for the single-path upsample module, and compared to the multi-path upsample module. Based on the experimental results, the proposed algorithm reduces the upsample module's parameters by 24% and presents slightly to better performance compared to the previous algorithm.

선삭공정에서 딥러닝 영상처리 기법을 이용한 작업자 위험 감소 방안 연구 (A Study on Worker Risk Reduction Methods using the Deep Learning Image Processing Technique in the Turning Process)

  • 배용환;이영태;김호찬
    • 한국기계가공학회지
    • /
    • 제20권12호
    • /
    • pp.1-7
    • /
    • 2021
  • The deep learning image processing technique was used to prevent accidents in lathe work caused by worker negligence. During lathe operation, when the chuck is rotated, it is very dangerous if the operator's hand is near the chuck. However, if the chuck is stopped during operation, it is not dangerous for the operator's hand to be in close proximity to the chuck for workpiece measurement, chip removal or tool change. We used YOLO (You Only Look Once), a deep learning image processing program for object detection and classification. Lathe work images such as hand, chuck rotation and chuck stop are used for learning, object detection and classification. As a result of the experiment, object detection and class classification were performed with a success probability of over 80% at a confidence score 0.5. Thus, we conclude that the artificial intelligence deep learning image processing technique can be effective in preventing incidents resulting from worker negligence in future manufacturing systems.

A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs

  • Kaya, Emine;Gunec, Huseyin Gurkan;Aydin, Kader Cesur;Urkmez, Elif Seyda;Duranay, Recep;Ates, Hasan Fehmi
    • Imaging Science in Dentistry
    • /
    • 제52권3호
    • /
    • pp.275-281
    • /
    • 2022
  • Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs. Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model. Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort

Incremental Strategy-based Residual Regression Networks for Node Localization in Wireless Sensor Networks

  • Zou, Dongyao;Sun, Guohao;Li, Zhigang;Xi, Guangyong;Wang, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권8호
    • /
    • pp.2627-2647
    • /
    • 2022
  • The easy scalability and low cost of range-free localization algorithms have led to their wide attention and application in node localization of wireless sensor networks. However, the existing range-free localization algorithms still have problems, such as large cumulative errors and poor localization performance. To solve these problems, an incremental strategy-based residual regression network is proposed for node localization in wireless sensor networks. The algorithm predicts the coordinates of the nodes to be solved by building a deep learning model and fine-tunes the prediction results by regression based on the intersection of the communication range between the predicted and real coordinates and the loss function, which improves the localization performance of the algorithm. Moreover, a correction scheme is proposed to correct the augmented data in the incremental strategy, which reduces the cumulative error generated during the algorithm localization. The analysis through simulation experiments demonstrates that our proposed algorithm has strong robustness and has obvious advantages in localization performance compared with other algorithms.

Machine Learning of GCM Atmospheric Variables for Spatial Downscaling of Precipitation Data

  • Sunmin Kim;Masaharu Shibata;YasutoTachikawa
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.26-26
    • /
    • 2023
  • General circulation models (GCMs) are widely used in hydrological prediction, however their coarse grids make them unsuitable for regional analysis, therefore a downscaling method is required to utilize them in hydrological assessment. As one of the downscaling methods, convolutional neural network (CNN)-based downscaling has been proposed in recent years. The aim of this study is to generate the process of dynamic downscaling using CNNs by applying GCM output as input and RCM output as label data output. Prediction accuracy is compared between different input datasets, and model structures. Several input datasets with key atmospheric variables such as precipitation, temperature, and humidity were tested with two different formats; one is two-dimensional data and the other one is three-dimensional data. And in the model structure, the hyperparameters were tested to check the effect on model accuracy. The results of the experiments on the input dataset showed that the accuracy was higher for the input dataset without precipitation than with precipitation. The results of the experiments on the model structure showed that substantially increasing the number of convolutions resulted in higher accuracy, however increasing the size of the receptive field did not necessarily lead to higher accuracy. Though further investigation is required for the application, this paper can contribute to the development of efficient downscaling method with CNNs.

  • PDF

합성곱 신경망(CNN)을 이용한 U-Net 기반의 인공지능 안면 정면화 모델 (Face Frontalization Model with A.I. Based on U-Net using Convolutional Neural Network)

  • 이상민;손원호;진창균;김지현;김지윤;박나은;김가은;권진영;이혜리;김종완;오덕신
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 추계학술발표대회
    • /
    • pp.685-688
    • /
    • 2020
  • 안면 인식은 Face ID를 비롯하여 미아 찾기, 범죄자 추적 등의 분야에 도입되고 있다. 안면 인식은 최근 딥러닝을 통해 인식률이 향상되었으나, 측면에서의 인식률은 정면에 비해 특징 추출이 어려우므로 비교적 낮다. 이런 문제는 해당 인물의 정면이 없고 측면만 존재할 경우 안면 인식을 통한 신원확인이 어려워 단점으로 작용될 수 있다. 본 논문에서는 측면 이미지를 바탕으로 정면을 생성함으로써 안면 인식을 적용할 수 있는 상황을 확장하는 인공지능 기반의 안면 정면화 모델을 구현한다. 모델의 안면 특징 추출을 위해 VGG-Face를 사용하며 특징 추출에서 생길 수 있는 정보 손실을 막기 위해 U-Net 구조를 사용한다.

로컬 특징 기반 글로벌 이미지를 사용한 CNN 기반의 악성코드 분류 방법 (Convolutional Neural Network-based Malware Classification Method utilizing Local Feature-based Global Image)

  • 장세준;성연식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2020년도 춘계학술발표대회
    • /
    • pp.222-223
    • /
    • 2020
  • 최근 악성코드로 인한 피해가 증가하고 있다. 악성코드는 악성코드가 속한 종류에 따라서 대응하는 방법도 다르기 때문에 악성코드를 종류별로 분류하는 연구도 중요하다. 기존에는 악성코드 시각화 과정을 통해서 생성된 악성코드의 글로벌 이미지를 사용해 악성코드를 각 종류별로 분류한다. 글로벌 이미지를 악성코드로부터 추출한 바이너리 정보를 사용해서 생성한다. 하지만, 글로벌 이미지만을 사용해서 악성코드를 각 종류별로 분류하는 경우 악성코드의 종류별로 중요한 특징을 고려하기 않기 때문에 분류 정확도가 떨어진다. 본 논문에서는 악성코드의 글로벌 이미지에 악성코드의 종류별 특징을 나타내기 위한 로컬 특징 기반 글로벌 이미지를 사용한 악성코드 분류 방법을 제안한다. 첫 번째, 악성 코드로부터 바이너리를 추출하고 추출된 바이너리를 사용해서 글로벌 이미지를 생성한다. 두 번째, 악성 코드로부터 로컬 특징을 추출하고 악성코드의 종류별 핵심 로컬 특징을 단어-역문서 빈도(Term Frequency Inverse Document Frequency, TFIDF) 알고리즘을 사용해 선택한다. 세 번째, 생성된 글로벌 이미지에 악성코드의 패밀리별 핵심 특징을 픽셀화해서 적용한다. 네 번째, 생성된 로컬 특징 기반 글로벌 이미지를 사용해서 컨볼루션 모델을 학습하고, 학습된 컨볼루션 모델을 사용해서 악성코드를 각 종류별로 분류한다.