• Title/Summary/Keyword: Convolution algorithm comparison

Search Result 28, Processing Time 0.021 seconds

A Study on Detection Performance Comparison of Bone Plates Using Parallel Convolution Neural Networks (병렬형 합성곱 신경망을 이용한 골절합용 판의 탐지 성능 비교에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.63-68
    • /
    • 2022
  • In this study, we produced defect detection models using parallel convolution neural networks. If convolution neural networks are constructed parallel type, the model's detection accuracy will increase and detection time will decrease. We produced parallel-type defect detection models using 4 types of convolutional algorithms. The performance of models was evaluated using evaluation indicators. The model's performance is detection accuracy and detection time. We compared the performance of each parallel model. The detection accuracy of the model using AlexNet is 97 % and the detection time is 0.3 seconds. We confirmed that when AlexNet algorithm is constructed parallel type, the model has the highest performance.

Computational Speed Comparison between FFT Convolution and Recursive Filtering

  • Lee, Hyeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1979.08a
    • /
    • pp.166-167
    • /
    • 1979
  • Performances of three computational algorithms for one-dimensional frequency filtering are compared and tradeoffs are studied. If the size of the filter impulse response is small, it is well-known that the conventional convolution is superior than the FFT convolution. If the size of the impulse response is large, it was suggested that the recursive filter might be competitive in terms of speed to the FFT convolution. We, therefore, have developed an computational, algorithm for the recursive filter to compare the speed advantages over the FFT convolution and the results are presented.

  • PDF

Free vibration analysis of composite conical shells using the discrete singular convolution algorithm

  • Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.353-366
    • /
    • 2006
  • The discrete singular convolution (DSC) algorithm for determining the frequencies of the free vibration of single isotropic and orthotropic laminated conical shells is developed by using a numerical solution of the governing differential equations of motion based on Love's first approximation thin shell theory. By applying the discrete singular convolution method, the free vibration equations of motion of the composite laminated conical shell are transformed to a set of algebraic equations. Convergence and comparison studies are carried out to check the validity and accuracy of the DSC method. The obtained results are in excellent agreement with those in the literature.

Design and Implementation of low-power short-length running convolution filter using filter banks (필터 뱅크를 사용한 저전력 short-length running convolution 필터 설계 및 구현)

  • Jang Young-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.625-634
    • /
    • 2006
  • In this paper, an efficient and fast algorithm to reduce calculation amount of FIR(Finite Impulse Responses) filtering is proposed. Proposed algorithm enables arbitrary size of parallel processing, and their structures are also easily derived. Furthermore, it is shown that the number of multiplication/sample is remarkably reduced. For theoretical improvement, numbers of sub filters are compared with those of conventional algorithm. In addition to the theoretical improvement, it is shown that number of element for hardwired implementation are reduced comparison to those of the conventional algorithm.

  • PDF

Efficient short-length running convolution algorithm using filter banks (필터 뱅크를 사용한 효율적인 short-length running convolution 알고리즘)

  • Jang Young-Beom;Oh Se-Man;Lee Won-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.187-194
    • /
    • 2005
  • In this paper, an efficient and fast algerian to reduce calculation amount of FIR(Finite Impulse Responses) filtering is proposed. Proposed algorithm enables arbitrary size of parallel processing, and their structures are also easily derived. Furthermore, it is shown that the number of multiplication/sample is reduced, and number of instructions using MAC(Multiplication and Accumulation) processor are also reduced. For theoretical improvement numbers of sub filters are compared with those of conventional algorithm. In addition to the theoretical improvement, it is shown that number of element for hardwired implementation are reduced comparison to those of the conventional algorithm.

Low power filter structure using Short-length running convolution (Short-length running convolution을 사용한 저전력 필터 구조)

  • Oh, Se-Man;Lee, Won-Sang;Jang, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.263-264
    • /
    • 2006
  • In this paper, an efficient and fast algorithm to reduce calculation amount of FIR(Finite Impulse Responses) filtering is proposed. Proposed algorithm enables arbitrary size of parallel processing, and their structures are also easily derived. Furthermore, it is shown that the number of multiplication/sample is reduced, and number of instructions using MAC(Multiplication and Accumulation) processor are also reduced. For theoretical improvement, numbers of sub filters are compared with those of conventional algorithm. In addition to the theoretical improvement, it is shown that number of element for hardwired implementation are reduced comparison to those of the conventional algorithm.

  • PDF

Comparison of The BER Performance Using Channel coding Depending on The Transmitter-receiver depth in The Underwater Channel (수중통신채널에서 채널코딩을 이용한 송수신 깊이별 에러오율 비교 연구)

  • Lee, Duck-Soo;Shim, Tae-Bo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.1
    • /
    • pp.32-37
    • /
    • 2011
  • Underwater communication is affected by reverberation and noise characteristics of the underwater channel and time delay takes place by multipath. Hence, Signal is distorted and a lot of error is generated in the transmitting/receiving by multipath effects, so a channel coding for error correction is required. We propose a channel coding algorithm which is possible to correct error of received signal. We compare and analyze BER(bit error rate) performance depending on the depth of each transmitter-receiver using channel coding algorithm. QPSK was used as a modulation method, and 1/2 code rate convolution coding was used as a coding rate. A convolution coding method shows increase of BER performances.

A Study on Real-Time Defect Detection System Using CNN Algorithm During Scaffold 3D Printing (CNN 알고리즘을 이용한 인공지지체의 3D프린터 출력 시 실시간 출력 불량 탐지 시스템에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.125-130
    • /
    • 2021
  • Scaffold is used to produce bio sensor. Scaffold is required high dimensional accuracy. 3D printer is used to manufacture scaffold. 3D printer can't detect defect during printing. Defect detection is very important in scaffold printing. Real-time defect detection is very necessary on industry. In this paper, we proposed the method for real-time scaffold defect detection. Real-time defect detection model is produced using CNN(Convolution Neural Network) algorithm. Performance of the proposed model has been verified through evaluation. Real-time defect detection system are manufactured on hardware. Experiments were conducted to detect scaffold defects in real-time. As result of verification, the defect detection system detected scaffold defect well in real-time.

Comparison of Dose Distributions Calculated by Anisotropic Analytical Algorithm and Pencil Beam Convolution Algorithm at Tumors Located in Liver Dome Site (간원개에 위치한 종양에 대한 Anisotropic Analyticalal Algorithm과 Pencil Beam Convolution 알고리즘에 따른 전달선량 비교)

  • Park, Byung-Do;Jung, Sang-Hoon;Park, Sung-Ho;Kwak, Jeong-Won;Kim, Jong-Hoon;Yoon, Sang-Min;Ahn, Seung-Do
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.106-113
    • /
    • 2012
  • The purpose of this study is to evaluate the variation of radiation dose distribution for liver tumor located in liver dome and for the interest organs(normal liver, kidney, stomach) with the pencil beam convolution (PBC) algorithm versus anisotropic Analyticalal algorithm (AAA) of the Varian Eclipse treatment planning system, The target volumes from 20 liver cancer patients were used to create treatment plans. Treatment plans for 10 patients were performed in Stereotactic Body Radiation Therapy (SBRT) plan and others were performed in 3 Dimensional Conformal Radiation Therapy (3DCRT) plan. dose calculation was recalculated by AAA algorithm after dose calculation was performed by PBC algorithm for 20 patients. Plans were optimized to 100% of the PTV by the Prescription Isodose in Dose Calculation with the PBC algorithm. Plans were recalculated with the AAA, retaining identical beam arrangements, monitor units, field weighting and collimator condition. In this study, Total PTV was to be statistically significant (SRS: p=0.018, 3DCRT: p=0.006) between PBC and AAA algorithm. and in the case of PTV, ITV in liver dome, plans for 3DCRT were to be statistically significant respectively (p=0.013, p=0.024). normal liver and kidney were to be statistically significant (p=0.009, p=0.037). For the predictive index of dose variation, CVF ratio was to be statistically significant for PTV in the liver dome versus PTV (SRS r=0.684, 3DCRT r=0.732, p<0.01) and CVF ratio for Tumor size was to be statistically significant (SRS r=-0.193, p=0.017, 3DCRT r=0.237, p=0.023).

Comparison of Film Measurements, Convolution$^{}$erposition Model and Monte Carlo Simulations for Small fields in Heterogeneous Phantoms (비균질 팬텀에서 소조사면에 대한 필름측정, 회선/중첩 모델과 몬테 카를로 모사의 비교 연구)

  • 김상노;제이슨손;서태석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.89-95
    • /
    • 2004
  • Intensity-modulated radiation therapy (IMRT) often uses small beam segments. The heterogeneity effect is well known for relatively large field sizes used in the conventional radiation treatments. However, this effect is not known in small fields such as the beamlets used in IMRT. There are many factors that can cause errors in the small field i.e. electronic disequilibrium and multiple electron scattering. This study prepared geometrically regular heterogeneous phantoms, and compared the measurements with the calculations using the Convolution/Superposition algorithm and Monte Carlo method for small beams. This study used the BEAM00/EGS4 code to simulate the head of a Varian 2300C/D. The commissioning of a 6MV photon beam were performed from two points of view, the beam profiles and depth doses. The calculated voxel size was 1${\times}$1${\times}$2$\textrm{cm}^2$ with field sizes of 1${\times}$1$\textrm{cm}^2$, 2${\times}$2$\textrm{cm}^2$, and 5${\times}$5$\textrm{cm}^2$. The XiOTM TPS (Treatment Planning System) was used for the calculation using the Convolution/Superposition algorithm. The 6MV photon beam was irradiated to homogeneous (water equivalent) and heterogeneous phantoms (water equivalent + air cavity, water equivalent + bone equivalent). The beam profiles were well matched within :t1 mm and the depth doses were within ${\pm}$2%. In conclusion, the dose calculations of the Convolution/Superposition and Monte Carlo simulations showed good agreement with the film measurements in the small field.