• Title/Summary/Keyword: Convolution Neural Networks

Search Result 167, Processing Time 0.022 seconds

A Study on Detection Performance Comparison of Bone Plates Using Parallel Convolution Neural Networks (병렬형 합성곱 신경망을 이용한 골절합용 판의 탐지 성능 비교에 관한 연구)

  • Lee, Song Yeon;Huh, Yong Jeong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.63-68
    • /
    • 2022
  • In this study, we produced defect detection models using parallel convolution neural networks. If convolution neural networks are constructed parallel type, the model's detection accuracy will increase and detection time will decrease. We produced parallel-type defect detection models using 4 types of convolutional algorithms. The performance of models was evaluated using evaluation indicators. The model's performance is detection accuracy and detection time. We compared the performance of each parallel model. The detection accuracy of the model using AlexNet is 97 % and the detection time is 0.3 seconds. We confirmed that when AlexNet algorithm is constructed parallel type, the model has the highest performance.

Melanoma Classification Using Log-Gabor Filter and Ensemble of Deep Convolution Neural Networks

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1203-1211
    • /
    • 2022
  • Melanoma is a skin cancer that starts in pigment-producing cells (melanocytes). The death rates of skin cancer like melanoma can be reduced by early detection and diagnosis of diseases. It is common for doctors to spend a lot of time trying to distinguish between skin lesions and healthy cells because of their striking similarities. The detection of melanoma lesions can be made easier for doctors with the help of an automated classification system that uses deep learning. This study presents a new approach for melanoma classification based on an ensemble of deep convolution neural networks and a Log-Gabor filter. First, we create the Log-Gabor representation of the original image. Then, we input the Log-Gabor representation into a new ensemble of deep convolution neural networks. We evaluated the proposed method on the melanoma dataset collected at Yonsei University and Dongsan Clinic. Based on our numerical results, the proposed framework achieves more accuracy than other approaches.

A Video Expression Recognition Method Based on Multi-mode Convolution Neural Network and Multiplicative Feature Fusion

  • Ren, Qun
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.556-570
    • /
    • 2021
  • The existing video expression recognition methods mainly focus on the spatial feature extraction of video expression images, but tend to ignore the dynamic features of video sequences. To solve this problem, a multi-mode convolution neural network method is proposed to effectively improve the performance of facial expression recognition in video. Firstly, OpenFace 2.0 is used to detect face images in video, and two deep convolution neural networks are used to extract spatiotemporal expression features. Furthermore, spatial convolution neural network is used to extract the spatial information features of each static expression image, and the dynamic information feature is extracted from the optical flow information of multiple expression images based on temporal convolution neural network. Then, the spatiotemporal features learned by the two deep convolution neural networks are fused by multiplication. Finally, the fused features are input into support vector machine to realize the facial expression classification. Experimental results show that the recognition accuracy of the proposed method can reach 64.57% and 60.89%, respectively on RML and Baum-ls datasets. It is better than that of other contrast methods.

A Study on the Optimization of Convolution Operation Speed through FFT Algorithm (FFT 적용을 통한 Convolution 연산속도 향상에 관한 연구)

  • Lim, Su-Chang;Kim, Jong-Chan
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.11
    • /
    • pp.1552-1559
    • /
    • 2021
  • Convolution neural networks (CNNs) show notable performance in image processing and are used as representative core models. CNNs extract and learn features from large amounts of train dataset. In general, it has a structure in which a convolution layer and a fully connected layer are stacked. The core of CNN is the convolution layer. The size of the kernel used for feature extraction and the number that affect the depth of the feature map determine the amount of weight parameters of the CNN that can be learned. These parameters are the main causes of increasing the computational complexity and memory usage of the entire neural network. The most computationally expensive components in CNNs are fully connected and spatial convolution computations. In this paper, we propose a Fourier Convolution Neural Network that performs the operation of the convolution layer in the Fourier domain. We work on modifying and improving the amount of computation by applying the fast fourier transform method. Using the MNIST dataset, the performance was similar to that of the general CNN in terms of accuracy. In terms of operation speed, 7.2% faster operation speed was achieved. An average of 19% faster speed was achieved in experiments using 1024x1024 images and various sizes of kernels.

VLSI Design of High Speed Digital Neural Network using the Binary Convolution (Binar Convolution을 이용한 고속 디지탈 신경회로망의 VLSI 설계)

  • Choi, Seung-Ho;Kim, Young-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.13-20
    • /
    • 1996
  • Recently, for implementation of neural networks extensive studies have been done especially VLSI technology has been regarded as the one of the most attractive means to implement neural networks. The main drawbacks of digital VLSI implementations are their large area and slow processing speed. In this paper to solve the speed and size problems we designed the efficient architecture using the binary convolution method for basic operation of neural cell, multiplication and addition. When it is used for implementing 3-layer network with 16 neural cell per layer that used neural cell based on binary convolution, clock of 50MHz and 26MCPS on 0.8${\mu}$ standard cell library has been achieved.

  • PDF

New Approach to Optimize the Size of Convolution Mask in Convolutional Neural Networks

  • Kwak, Young-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Convolutional neural network (CNN) consists of a few pairs of both convolution layer and subsampling layer. Thus it has more hidden layers than multi-layer perceptron. With the increased layers, the size of convolution mask ultimately determines the total number of weights in CNN because the mask is shared among input images. It also is an important learning factor which makes or breaks CNN's learning. Therefore, this paper proposes the best method to choose the convolution size and the number of layers for learning CNN successfully. Through our face recognition with vast learning examples, we found that the best size of convolution mask is 5 by 5 and 7 by 7, regardless of the number of layers. In addition, the CNN with two pairs of both convolution and subsampling layer is found to make the best performance as if the multi-layer perceptron having two hidden layers does.

The application of convolutional neural networks for automatic detection of underwater object in side scan sonar images (사이드 스캔 소나 영상에서 수중물체 자동 탐지를 위한 컨볼루션 신경망 기법 적용)

  • Kim, Jungmoon;Choi, Jee Woong;Kwon, Hyuckjong;Oh, Raegeun;Son, Su-Uk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.118-128
    • /
    • 2018
  • In this paper, we have studied how to search an underwater object by learning the image generated by the side scan sonar in the convolution neural network. In the method of human side analysis of the side scan image or the image, the convolution neural network algorithm can enhance the efficiency of the analysis. The image data of the side scan sonar used in the experiment is the public data of NSWC (Naval Surface Warfare Center) and consists of four kinds of synthetic underwater objects. The convolutional neural network algorithm is based on Faster R-CNN (Region based Convolutional Neural Networks) learning based on region of interest and the details of the neural network are self-organized to fit the data we have. The results of the study were compared with a precision-recall curve, and we investigated the applicability of underwater object detection in convolution neural networks by examining the effect of change of region of interest assigned to sonar image data on detection performance.

A Deep Learning Model for Predicting User Personality Using Social Media Profile Images

  • Kanchana, T.S.;Zoraida, B.S.E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.11
    • /
    • pp.265-271
    • /
    • 2022
  • Social media is a form of communication based on the internet to share information through content and images. Their choice of profile images and type of image they post can be closely connected to their personality. The user posted images are designated as personality traits. The objective of this study is to predict five factor model personality dimensions from profile images by using deep learning and neural networks. Developed a deep learning framework-based neural network for personality prediction. The personality types of the Big Five Factor model can be quantified from user profile images. To measure the effectiveness, proposed two models using convolution Neural Networks to classify each personality of the user. Done performance analysis among two different models for efficiently predict personality traits from profile image. It was found that VGG-69 CNN models are best performing models for producing the classification accuracy of 91% to predict user personality traits.

Multi-site based earthquake event classification using graph convolution networks (그래프 합성곱 신경망을 이용한 다중 관측소 기반 지진 이벤트 분류)

  • Kim, Gwantae;Ku, Bonhwa;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.615-621
    • /
    • 2020
  • In this paper, we propose a multi-site based earthquake event classification method using graph convolution networks. In the traditional earthquake event classification methods using deep learning, they used single-site observation to estimate seismic event class. However, to achieve robust and accurate earthquake event classification on the seismic observation network, the method using the information from the multi-site observations is needed, instead of using only single-site data. Firstly, our proposed model employs convolution neural networks to extract informative embedding features from the single-site observation. Secondly, graph convolution networks are used to integrate the features from several stations. To evaluate our model, we explore the model structure and the number of stations for ablation study. Finally, our multi-site based model outperforms up to 10 % accuracy and event recall rate compared to single-site based model.

Neural Network Image Reconstruction for Magnetic Particle Imaging

  • Chae, Byung Gyu
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.841-850
    • /
    • 2017
  • We investigate neural network image reconstruction for magnetic particle imaging. The network performance strongly depends on the convolution effects of the spectrum input data. The larger convolution effect appearing at a relatively smaller nanoparticle size obstructs the network training. The trained single-layer network reveals the weighting matrix consisting of a basis vector in the form of Chebyshev polynomials of the second kind. The weighting matrix corresponds to an inverse system matrix, where an incoherency of basis vectors due to low convolution effects, as well as a nonlinear activation function, plays a key role in retrieving the matrix elements. Test images are well reconstructed through trained networks having an inverse kernel matrix. We also confirm that a multi-layer network with one hidden layer improves the performance. Based on the results, a neural network architecture overcoming the low incoherence of the inverse kernel through the classification property is expected to become a better tool for image reconstruction.