• Title/Summary/Keyword: Convolution$^{}$erposition algorithm

Search Result 2, Processing Time 0.019 seconds

Comparison of Film Measurements, Convolution$^{}$erposition Model and Monte Carlo Simulations for Small fields in Heterogeneous Phantoms (비균질 팬텀에서 소조사면에 대한 필름측정, 회선/중첩 모델과 몬테 카를로 모사의 비교 연구)

  • 김상노;제이슨손;서태석
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.89-95
    • /
    • 2004
  • Intensity-modulated radiation therapy (IMRT) often uses small beam segments. The heterogeneity effect is well known for relatively large field sizes used in the conventional radiation treatments. However, this effect is not known in small fields such as the beamlets used in IMRT. There are many factors that can cause errors in the small field i.e. electronic disequilibrium and multiple electron scattering. This study prepared geometrically regular heterogeneous phantoms, and compared the measurements with the calculations using the Convolution/Superposition algorithm and Monte Carlo method for small beams. This study used the BEAM00/EGS4 code to simulate the head of a Varian 2300C/D. The commissioning of a 6MV photon beam were performed from two points of view, the beam profiles and depth doses. The calculated voxel size was 1${\times}$1${\times}$2$\textrm{cm}^2$ with field sizes of 1${\times}$1$\textrm{cm}^2$, 2${\times}$2$\textrm{cm}^2$, and 5${\times}$5$\textrm{cm}^2$. The XiOTM TPS (Treatment Planning System) was used for the calculation using the Convolution/Superposition algorithm. The 6MV photon beam was irradiated to homogeneous (water equivalent) and heterogeneous phantoms (water equivalent + air cavity, water equivalent + bone equivalent). The beam profiles were well matched within :t1 mm and the depth doses were within ${\pm}$2%. In conclusion, the dose calculations of the Convolution/Superposition and Monte Carlo simulations showed good agreement with the film measurements in the small field.

The Feasibility Study on the Direct Use of the MC-derived Physical Quantities to Determine the Model Parameters of RTPS with -Model-Based Photon Dose Calculation Algorithm (모델기반 광자선량 계산방식을 사용하는 전산화치료계획장치의 모델변수 결정에 있어 몬테카를로 모사법에 의해 유도된 방사선 물리량의 직접 적용 가능성에 대한 연구)

  • 강세권;박희철;배훈식;조병철
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.77-83
    • /
    • 2004
  • The commissioning of a model-based treatment planning system requires many parameters to fit the measured depth doses and transverse profiles. For the commissioning of the Pinnacle$^3$ system, through the Monte Carlo (MC) simulation, the necessary parameters, including the photon spectrum, contaminant electrons, off-axis softening and fluency of photons, were observed. Through the simulation the parameters contained valuable information, but the calculated results of the Pinnacle$^3$ using the MC-derived parameters showed discrepancies with those measured for the off-axis softening and the fluency of photons. Even though the MC calculation produces reasonable values for the commissioning, the thorough physical basis of the Pinnacle$^3$'s commissioning process is needed in order to directly use the MC derived parameters.

  • PDF