• Title/Summary/Keyword: Converter light-off

Search Result 31, Processing Time 0.019 seconds

A STUDY ON A CATALYTIC CONVERTER OBD BEFORE LIGHT-OFF

  • Yun, Seung-Won;Son, Geon-Seog;Lee, Kwi-Young
    • International Journal of Automotive Technology
    • /
    • v.3 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • Increasingly stringent emission regulations of EU and CARB (California Air resource Board) require mandatory OBD (On Board Diagnostics) far the catalytic converters of a vehicle. It demands that MIL(Malfunction Indication Light) should be tuned on to inform the driver of catalytic converter failures. Currently dual oxygen sensor method Is widely used for the converter OBD. However, since it works only alter converter light-off, it has a serious limitation when applied to TLEV or more stringent emission regulations where more than 85% of total emission is coming out before converter light-off. In addition, a recent development in catalyst material. coating technology and additive catalysts leads to a much improved OSC (Oxygen Storage Capacity) after converter light-off, current methods are very difficult to determine levels of converter aging. Therefore, it is desired to develop an OSC detecting method before converter light-off to diagnose converter failures with higher reliability. In this study, OSCs of converters are measured by an absolute measuring method and a dynamic measuring method, and some of fundamental ideas are suggested about converter OBD before converter light-off. The converters are aged with two different aging methods; those are a furnace aging and an engine bench aging: to represent aging conditions in actual field applications. Dual oxygen sensor method at the lower temperature than light-off is also studied at a model gas bench with the converters. It is fecund that there is a certain point in temperature lower than light-off where difference due to aging level becomes maximum, thus a proper dynamic method to effectively monitor catalytic converters could be implemented fur the range lower than light-off temperatures. With this result, the aging level of converters is examined at an engine bench.

Parametric Study of Engine Operating Conditions Affecting on Catalytic Converter Temperature (엔진 문전 조건이 촉매 온도에 미치는 영향)

  • 이석환;배충식;이용표;한태식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.61-69
    • /
    • 2002
  • To meet stringent LEV and ULEV emission standards, a considerable amount of development work was necessary to ensure suitable efficiency and durability of catalyst systems. The main challenge is to cut off the engine cold-start emissions. It is known that up to 80% of the total hydrocarbons(THC) are exhausted within the first five minutes in case of US FTP 75 cycle. Close-Coupled Catalyst(CCC) provides fast light-off temperature by utilizing the energy in the exhaust gas. However, if some malfunction occurred at engine operation and the catalyst temperature exceeds 1050$\^{C}$, the catalytic converter is deactivated and shows the poor conversion efficiency. This paper presents effEcts of engine operating conditions on catalytic converter temperature in a SI engine, which are the indications of catalytic deactivation. Exhaust gas temperature and catalyst temperature were measured as a function of air/fuel ratio, ignition timing and misfire rates. Additionally, light-off time was measured to investigate the effect of operating conditions. It was found that ignition retard and misfire can result in the deactivation of the catalytic converter, which eventually leads the drastic thermal aging of the converter. Significant reduction in light-off time can be achieved with proper control of ignition retard and misfire, which can reduce cold-start HC emissions as well.

A Study of Light-off Performance of Catalytic Converter with the Effect of Flow Characteristics (유동특성을 고려한 촉매변환기의 활성화(Light-off) 성능에 관한 연구)

  • 정수진;김우승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.107-120
    • /
    • 1999
  • Catalytic converters are the most fascinating and complicated chemical reactors. They are most often operated in the transient state with respect to composition, flow rate, temperature, etc. The mathermatical model developed in this work accounts for simultaneous heat and mass transfer, chemical reaction, and multi dimensional flow characteristics to analyze the light-off performance of monolithic catalytic converter with comparable mass flow rate. To validate the mathematical model, comparison between experimental and numerical results has been performed. The numerical results show a good agreement with experimental data. It is forund that inflow rate shows major effect on the characteristics of termal response of catalytic converter.

  • PDF

Numerical Analysis of Thermal and Flow Characteristics for an Optimum Design of Automotive Catalytic Converter (자동차용 촉매변환기의 최적설계를 위한 열 및 유동특성에 대한 수치적 연구)

  • Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.841-855
    • /
    • 1999
  • In the present work, the effect of a flow maldistribution on the thermal and conversion response of 8 monolith catalytic converter is Investigated. To achieve this goal, a combined chemical reaction and multi-dimensional fluid dynamic mathematical model has been developed. The present results show that flow uniformity within the monolith brick has 8 great impact on light-off performance of the catalytic converter. In the case of lower flow uniformity, large portions of the monolith remain cold due to locally concentrated high velocities and CO, HC are unconverted during warm-up period, which loads to retardation of light-off. It has been also found that the heat-up pattern of the monolith ill similar to the flow distribution profile, In the early stage of the reaction. It may be concluded that flow maldistribution can cause a significant retardation of the light-off and hence can eventually worsen tho conversion efficiency of automotive catalytic converter.

A Study on Characteristics of Exhaust Gas Temperature Uniformity and Light-off in Motorcycle Catalytic Converter (2륜 자동차 촉매변환기내 배기가스 온도균일도 특성과 Light-Off에 관한 연구)

  • Yi, Chung-Seub;Jeong, Hyo-Min;Lee, Cheol-Jae;Chung, Han-Shik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.507-513
    • /
    • 2007
  • This study represents the temperature uniformity in catalytic converter. Present research model type is a monolithic catalytic converter. This type was been widely used for complying the regulations of pollutant emissions from automobiles. The mean experimental parameters are engine speed and ceramics monolith in the catalytic converter. The experimental test engine model used was the 124.1cc motorcycle engine. The experimental study using thermal imaging method shows the megaphone type model has larger effective area than the basic model. The rate of effective area in the basic model is about 8.9 % and the megaphone type model are 41.52 %, 34.60 %, 33.43 %, 25.43 %, 17.82 % according to the diffuser angle $4^{\circ}\;to\;8^{\circ}$. In conclusion, the megaphone type monolithic converter has higher efficiency of reducing the pollution with less noise compared to the basic shape. We believe this will be very important as a design guide of the advanced motorcycle.

A Study of Catalyst Temperature Rise Effect by using UEGI(Unburned Exhaust Gas Ignition) Technology during Cold-Start (냉시동시 미연 배기가스 점화 기술을 이용한 촉매 온도 상승 효과에 관한 연구)

  • Kim, C.S.;Chun, J.Y.;Choi, J.W.;Kim, I.T.;Ohm, I.Y.;Cho, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.335-340
    • /
    • 2000
  • Most vehicle's exhaust emissions come from the cold transient period of the FTP-75 test. In this study, UEGI technology was developed to help close-coupled catalytic converter (CCC) reach light-off temperature within a few seconds after cold-start. In the UEGI system, unburned exhaust mixture is ignited by four glow plugs installed upstream of the catalyst. Experimental results showed that the temperature of CCC rises faster with the UEGI technology, and the CCC reaches light-off temperature earlier. Under the conditions tested, the light-off time of the baseline case was 62 seconds and that of the UEGI case was 33 seconds.

  • PDF

Effect of Exhaust Heat Exchanger on Catalytic Converter Temperature in an SI Engine (가솔린 엔진의 배기 열교환기가 촉매 온도에 미치는 영향에 관한 연구)

  • 이석환;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.9-16
    • /
    • 2004
  • Close-coupled catalyst (CCC) can reduce the engine cold-start emissions by utilizing the energy in the exhaust gas. However, in case the engine is operated at high engine speed and load condition, the catalytic converter may be damaged and eventually deactivated by thermal aging. Excess fuel is sometimes supplied intentionally to lower the exhaust gas temperature avoiding the thermal aging. This sacrifices the fuel economy and exhaust emissions. This paper describes the results of an exhaust heat exchanger to lower the exhaust gas temperature mainly under high load conditions. The heat exchanger was installed between the exhaust manifold and the inlet of close-coupled catalytic converter. The exhaust heat exchanger successfully decreased the exhaust gas temperature, which eliminated the requirement of fuel enrichment under high load conditions. However, the cooling of the exhaust gas through the heat exchanger may cause the deterioration of exhaust emissions at cold start due to the increment of catalyst light-off time.

Analysis, Design, and Implementation of a Zero-Voltage-Transition Interleaved Boost Converter

  • Ting, Naim Suleyman;Sahin, Yakup;Aksoy, Ismail
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.41-55
    • /
    • 2017
  • This study proposes a novel zero voltage transition (ZVT) pulse width modulation (PWM) DC-DC interleaved boost converter with an active snubber cell. All the semiconductor devices in the converter turn on and off with soft switching to reduce the switching power losses and improve the overall efficiency. Through the interleaved approach, the current stresses of the main devices and the ripple of the output voltage and input current are reduced. The main switches turn on with ZVT and turn off with zero voltage switching (ZVS). The auxiliary switch turns on with zero current switching (ZCS) and turns off with ZVS. In addition, the snubber cell does not create additional current or voltage stress on the main switches and main diodes. The proposed converter can smoothly achieve soft switching characteristics even under light load conditions. The theoretical analysis and operating stages of the proposed converter are made for the D > 50% and D < 50% modes. Finally, a prototype of the proposed converter is implemented, and the experimental results are given in detail for 500 W and 50 kHz. The overall efficiency of the proposed converter reached 95.5% at nominal output power.

Exhaust Gas Temperature Characteristics of Catalytic Converter Shape for Motorcycle (2륜 자동차용 촉매 변환기 형상에 따른 배기온도 특성)

  • Yi, Chung-Seub;Suh, Jeong-Se;Chung, Han-Shik;Jeong, Hyo-Min;Bae, Jae-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.138-144
    • /
    • 2006
  • This research represents the catalytic converter for application in the motorcycle. Present research model type is a monolithic catalytic converter and this type has been widely used for satisfaction on and the regulations of pollutant emissions in automobiles. The experiment range is found for light-off temperature time of the catalyst converter. And we has to experiment for effective area of catalytic monolith. The experimental result indicated an increase effective area in the catalytic monolith. Specialty, it was found from the result that the more positive effect from result of thermal image camera in the megaphone model. The rate of effective area for base model was about 8.97% and megaphone model was 41.52%, 34.60%, 33.43%, 25.43% and 17.82% on the diffuser angle $4^{\circ}$ to $8^{\circ}$. Comparing with base type, megaphone type has more suitable for application to motorcycle.

Comparative Analysis of Current Controls for Boost PFC Converter under Light Load

  • Juil Kim;Yeong-Jun Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.143-151
    • /
    • 2024
  • In this paper, the inductor current distortion in a boost PFC (Power Factor Correction) converter under light load is mathematically analyzed, and its reasons are defined. In the average current mode control under light load, the inductor current is discontinuous, resulting in an inaccurate inductor current average value being reflected in the current control. In predictive current mode control, the current ripple is relatively large compared to the inductor current, leading to severe current distortion. In addition, the switch is turned off near the peak of the inductor current when model predictive current control is applied. Inductor current distortion must be addressed because it leads to an increase in total harmonic distortion and a decrease in power factor. In this paper, the design procedure to mitigate the light load current distortion in boost PFC converter is selected based on the mathematical analysis. Finally, a comparative analysis of control methods under light load is performed using hardware-in-the-loop simulation.