• Title/Summary/Keyword: Conversion of Applications

Search Result 757, Processing Time 0.024 seconds

A Study on Customer Segmentation and Applications of e-mail System - Based on e-CRM - (e-CRM 관점에서 본 이메일 시스템의 고객분석 및 활용에 관한 연구)

  • Kim Yeon-Jeong
    • Journal of Korea Technology Innovation Society
    • /
    • v.7 no.3
    • /
    • pp.681-709
    • /
    • 2004
  • The purpose of this study is to classify customers by e-mail responsiveness on time-series analysis and testify the effectiveness of grouping by ROI analysis. Response recency, response frequency and Activity(RFA) of e-mailing systems are adapted for Customer segmentations. ROI analysis are consisted of open, click-through, duration time, personalization, conversion rate and email loyalty index of email systems. Major findings are as follows: RFA analysis is used for customer segmentations that is fundamental process of e-CRM applications. Customers can be grouped into loyal customers, odds customers, dormant customers, secession customers, and observation customers by RFA grouping. Loyal customer group has high point in all ROI index compared to other groups. These results indicated that customer responsiveness of e-mail systems were appropriate methods to group the customer with demographic variables. Therefore, effective e-mail marketing strategy of e-Biz should have suitable active DB and Behavior targeting is best approach to enforce the target e-mail marketing.

  • PDF

A Novel Technique for Tuning PI-Controllers in Induction Motor Drive Systems for Electric Vehicle Applications

  • Elwer Ayman Saber
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.322-329
    • /
    • 2006
  • In the last decade, the increasing restrictions imposed on the exhaust emissions from internal combustion engines and traffic limitations have increased the development of electrical propulsion systems for automotive applications. The goal of electrical and hybrid vehicles is the reduction of global emissions, which in turn leads to a decrease in fuel resource exploitation. This paper presents a novel approach for control of Induction Motors (IM) using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the Proportional Integral Controller (PI-Controller). The overall system is simulated under various operating conditions. The use of PSO as an optimization algorithm makes the drive robust and insensitive to load variation with faster dynamic response and higher accuracy. The system is tested under variable operating conditions. The simulation results show a positive dynamic response with fast recovery time.

A Performance Comparison of Block-Based Matching Cost Evaluation Models for FRUC Techniques

  • Kim, Jin-Soo;Kim, Jae-Gon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.6
    • /
    • pp.671-675
    • /
    • 2011
  • DVC (Distributed Video Coding) and FRUC (Frame Rate Up Conversion) techniques need to have an efficient motion compensated frame interpolation algorithms. Conventional works of these applications have mainly focused on the performance improvement of overall system. But, in some applications, it is necessary to evaluate how well the MCI (Motion Compensated Interpolation) frame matches the original frame. For this aim, this paper deals with the modeling methods for evaluating the block-based matching cost. First, several matching criteria, which have already been dealt with the motion compensated frame interpolation, are introduced and then combined to make estimate models for the size of MSE (Mean Square Error) noise of the MCI frame to original one. Through computer simulations, it is shown that the block-based matching criteria are evaluated and the proposed model can be effectively used for estimating the MSE noise.

Speed Control System of Induction Motor with Fuzzy-Sliding Mode Controller for Traction Applications

  • Kim, Duk-Heon;Ryoo, Hong-Je;Rim, Geun-Hie;Kim, Yong-Ju;Won, Chung-Yuen
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.52-58
    • /
    • 2003
  • The application of a sliding mode control for improving the dynamic response of an induction motor based speed control system is presented in this paper and provides attractive features, such as fast response, good transient performance, and insensitivity to variations in plant parameters and external disturbance. However, chattering is a difficult problem for which the sliding mode control is a popular solution. This paper presents a new fuzzy-sliding mode controller for a sensorless vector-controlled induction motor servo system to practically eliminate the chattering problem for traction applications. A DSP based implementation of the speed control system is employed. Experimental results are presented using a propulsion system simulator. The performance of the drive is shown to be practically free from chattering.

Development of Click Chemistry in Polymerization and Applications of Click Polymer

  • Karim, Md. Anwarul
    • Rubber Technology
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Click chemistry had enjoyed a wealthy decade after it was introduced by K.B.Sharpless and his co-worker on 2001. Since there is no optimized method for synthesis of click polymer, therefore, this paper introduced three click reaction methods such as catalyst, non-catalyst and azide-end capping for fluorene-based functional click polymers. The obtained polymers have reasonable molecular weight with narrow PDI. The polymers are thermally stable and almost emitted blue light emission. The synthesized fluorene-based functional click polymers were characterized to compare the effect of click reaction methods on polymer electro-optical properties as well as device performance on quasi-solid-state dye sensitized solar cells (DSSCs) applications. The DSSCs with configuration of $SnO_2:F/TiO_2/N719$ dye/quasi-solid-state electrolyte/Pt devices were fabricated using these click polymers as a solid-state electrolyte components. Among the devices, the catalyzed click polymer composed device exhibited a high power conversion efficiency of 4.62% under AM 1.5G illumination ($100mW/cm^2$).These click polymers are promising materials in device application and $Cu^I$-catalyst 1, 3-dipolar cycloaddition click reaction is an efficient synthetic methodology.

  • PDF

Lossless Snubber with Minimum Voltage Stress for Continuous Current Mode Tapped-Inductor Boost Converters for High Step-up Applications

  • Kang, Jeong-Il;Han, Sang-Kyoo;Han, Jonghee
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.621-631
    • /
    • 2014
  • To invigorate the tapped-inductor boost (TIB) topology in emerging high step-up applications for off-grid products, a lossless snubber consisting of two capacitors and three diodes is proposed. Since the switch voltage stress is minimized in the proposed circuit, it is allowed to use a device with a lower cost, higher efficiency, and higher availability. Moreover, since the leakage inductance is fully utilized, no effort to minimize it is required. This allows for a highly productive and cost-effective design of the tapped-inductor. The proposed circuit also shows a high step-up ratio and provides relaxation of the switching loss and diode reverse-recovery. In this paper, the operation is analyzed in detail, the steady-state equation is derived, and the design considerations are discussed. Some experimental results are provided to confirm the validity of the proposed circuit.

Triboelectric Energy Harvesting for Self-powered Antibacterial Applications

  • In-Yong Suh;Sang-Woo Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.213-218
    • /
    • 2023
  • Triboelectric nanogenerators (TENGs) have emerged as a highly promising energy harvesting technology capable of harnessing mechanical energy from various environmental vibrations. Their versatility in material selection and efficient conversion of mechanical energy into electric energy make them particularly attractive. TENGs can serve as a valuable technology for self-powered sensor operation in preparation for the IoT era. Additionally, they demonstrate potential for diverse applications, including energy sources for implanted medical devices (IMDs), neural therapy, and wound healing. In this review, we summarize the potential use of this universally applicable triboelectric energy harvesting technology in the disinfection and blocking of pathogens. By integrating triboelectric energy harvesting technology into human clothing, masks, and other accessories, we propose the possibility of blocking pathogens, along with technologies for removing airborne or waterborne infectious agents. Through this, we suggest that triboelectric energy harvesting technology could be an efficient alternative to existing pathogen removal technologies in the future.

Design of a SiGe HBT MMIC Double Balaned Up-converter for WLAN Applications (C-BAND WLAN용 SiGe HBT MMIC 이중평형형 상향주파수 혼합기)

  • 서정욱;정병희;오영수;채규성;김창우
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.346-349
    • /
    • 2003
  • A SiGe HBT MMIC double balaced up-converter has been designed and fabricated for C-band WLAN applications. The up-converter is based on the Gilbert cell mixer with an active baluns for differential inputs of LO and IF signals. The designed up-converter exhibits a conversion gain 12.5dB for a -10 dBm LO power. It also exhibits LO-RF isolation of 19.3dBc, and IF-RF isolation of 23.3 dBc at a 1-dB compression point of -14.2dBm

  • PDF

Design and Preparation of High-Performance Bulk Thermoelectric Materials with Defect Structures

  • Lee, Kyu Hyoung;Kim, Sung Wng
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.75-85
    • /
    • 2017
  • Thermoelectric is a key technology for energy harvesting and solid-state cooling by direct thermal-to-electric energy conversion (or vice versa); however, the relatively low efficiency has limited thermoelectric systems to niche applications such as space power generation and small-scale or high-density cooling. To expand into larger scale power generation and cooling applications such as ATEG (automotive thermoelectric generators) and HVAC (heating, ventilation, and air conditioning), high-performance bulk thermoelectric materials and their low-cost processing are essential prerequisites. Recently, the performance of commercial thermoelectric materials including $Bi_2Te_3$-, PbTe-, skutterudite-, and half-Heusler-based compounds has been significantly improved through non-equilibrium processing technologies for defect engineering. This review summarizes material design approaches for the formation of multi-dimensional and multi-scale defect structures that can be used to manipulate both the electronic and thermal transport properties, and our recent progress in the synthesis of conventional thermoelectric materials with defect structures is described.

Single Balanced Monolithic Diode Mixer using Marchand Balun for Millimeter-wave Applications

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of IKEEE
    • /
    • v.16 no.2
    • /
    • pp.127-130
    • /
    • 2012
  • In this paper, we reported on a single balanced monolithic diode mixer using Marchand balun for millimeter-wave applications. The single balanced monolithic mixer was fabricated using drain-source-connected pseudomorphic high electron mobility transistor (PHEMT) diodes considering the PHEMT MMIC full process. The average conversion loss is 16 dB in the RF frequency range of 81~86 GHz at LO frequency of 75 GHz with LO power of 10 dBm. The RF-to-LO isolation characteristics are greater than -30 dB and the total chip size is $1.0mm{\times}1.35mm$.