• 제목/요약/키워드: Conversion lens

검색결과 35건 처리시간 0.029초

고집광 태양광 발전을 위한 광학시스템 렌즈 개발 (The Development of the Lens of the Optical System for High Concentration Solar PV System)

  • 유광선;차원호;신구환;조희근;김용식;강성원;강기환
    • 한국태양에너지학회 논문집
    • /
    • 제31권2호
    • /
    • pp.82-88
    • /
    • 2011
  • The artificial increase in the solar intensity incident on solar cells using lenses or mirrors can allow solar cells to generate equivalent power with a lower cost. There are two types of concentration optics for solar energy conversion. One is to use mirrors, and the other is to use Fresnel lenses. The gains that can be achieved with a Fresnel lens or a parabolic mirror are compared. The result showed the gains are comparable and the two configurations were developed competitively. In application areas of Fresnel lenses as solar concentrators, several variations of design were devised and tested. Some PV systems still use commercially available flat Fresnel lenses as concentrators. A convex linear Fresnel lens to improve the concentration ratio and the efficiency is devised and flat linear Fresnel lens in thermal energy collection is utilized. In this study, we designed and optimized flat Fresnel lens and the 'light pipe' to develop 500X concentrated solar PV system. In the process, we compare the transmission efficiencies according to groove types. We performed rigorous ray tracing simulation of the flat Fresnel lenses. The computer aided simulation showed the 'grooves in case' has the better efficiency than that of 'grooves out case'. Based on the ray-trace results we designed and manufactured sample Fresnel lenses. The optical performance were measured and compared with ray-trace results. Finally, the optical efficiency was measured to be above 75%. All the design and manufacturing were performed based on that InGaP/InGaAs/Ge triple junction solar cell is used to convert the photon energy to electrical power. Field test will be made and analyzed in the near future.

백색 LED용 저 연화점 유리를 이용한 색 변환 렌즈의 제조 조건에 따른 광 특성 (Optical Properties as Process Condition of Color Conversion Lens Using Low-softening Point Glass for White LED)

  • 채유진;이미재;황종희;임태영;김진호;정희석;이영식;김득중
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.454-459
    • /
    • 2013
  • Recently, remote phosphors have been reported for application to white LEDs to provide enhanced phosphor efficiency compared with conventional phosphor-based white LEDs. In this study, a remote phosphor was produced by coating via screen printing on a glass substrate with different numbers of phosphor coating. The paste consists of phosphor, lowest softening glass frits, and organic binders. The remote phosphor could be well controlled by varying the phosphor content rated paste. After mounting the remote phosphor on top of a blue LED chip, CCT, CRI, and luminance efficiency were measured and values of 5300 K, 62, and 117 lm/W were respectively obtained in the 80 wt% phosphor with 3 coating layers sintered at $800^{\circ}C$.

Study on terahertz (THz) photoconversion technology based on hyperfine energy-level splitting of Positronium (Ps) generated from relativistic electron beams

  • Sun-Hong Min;Chawon Park;Ilsung Cho;Minho Kim;Sukhwal Ma;Won Taek Hwang;Kyeong Min Kim;Seungwoo Park;Min Young Lee;Eun Ju Kim;Kyo Chul Lee;Yong Jin Lee;Bong Hwan Hong
    • 대한방사성의약품학회지
    • /
    • 제6권2호
    • /
    • pp.102-115
    • /
    • 2020
  • In the state of Positronium (Ps), which is an unstable material created by the temporary combination of electrons and positrons, the imaging technology through photo-conversion methodology is emerging as a new research theme under resonance conditions through terahertz electromagnetic waves. Normally, Positronium can be observed in the positron emission computed tomography (PET) process when an unstable, separate state that remains after the pair annihilation of an electron and a positron remains. In this study, terahertz (THz) waves and Cherenkov radiation (CR) are generated using the principle of ponderomotive force in the plasma wake-field acceleration, and electrons and positrons are simultaneously generated by using a relativistic electron beam without using a PET device. We confirm the possibility of Positronium photoconversion technology in terahertz electromagnetic resonance conditions through experimental studies that generate an unstable state. Here, a relativistic electron beam (REB) energy of 0.5 MeV (γ=2) was used, and the terahertz wave frequencies is G-band. Meanwhile, a THz wave mode converting three-stepped axicon lens was used to apply the photoconversion technology. Through this, light emission in the form of a luminescence-converted Bessel beam can be verified. In the future, it can be used complementarily with PET in nuclear medicine in the field of medical imaging.

디지털 방사선영상 시스템의 기본적 원리 (Physical principles of digital radiographic imaging system)

  • 최진우;이원진
    • Imaging Science in Dentistry
    • /
    • 제40권4호
    • /
    • pp.155-158
    • /
    • 2010
  • Digital radiographic systems allow the implementation of a fully digital picture archiving and communication system (PACS), and provide the greater dynamic range of digital detectors with possible reduction of X-ray exposure to the patient. This article reviewed the basic physical principles of digital radiographic imaging system in dental clinics generally. Digital radiography can be divided into computed radiography (CR) and direct radiography (DR). CR systems acquire digital images using phosphor storage plates (PSP) with a separate image readout process. On the other hand, DR systems convert X-rays into electrical charges by means of a direct readout process. DR systems can be further divided into direct and indirect conversion systems depending on the type of X-ray conversion. While a direct conversion requires a photoconductor that converts X-ray photons into electrical charges directly, in an indirect conversion, lightsensitive sensors such as CCD or a flat-panel detector convert visible light, proportional to the incident X-ray energy by a scintillator, into electrical charges. Indirect conversion sensors using CCD or CMOS without lens-coupling are used in intraoral radiography. CR system using PSP is mainly used in extraoral radiographic system and a linear array CCD or CR sensors, in panoramic system. Currently, the digital radiographic system is an important subject in the dental field. Most studies reported that no significant difference in diagnostic performance was found between the digital and conventional systems. To accept advances in technology and utilize benefits provided by the systems, the continuous feedback between doctors and manufacturers is essential.

Nanocomposite-Based Energy Converters for Long-Range Focused Ultrasound Treatment

  • Lee, Seung Jin;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.369-369
    • /
    • 2016
  • A nanostructure composite is a highly suitable substance for photoacoustic ultrasound generation. This allows an input laser beam (typically, nanosecond pulse duration) to be efficiently converted to an ultrasonic output with tens-of-MHz frequency. This type of energy converter has been demonstrated by using a carbon nanotube (CNT)-polydimethylsiloxane (PDMS) composite film that exhibit high optical absorption, rapid heat transition, and mechanical durability, all of which are necessary properties for high-amplitude ultrasound generation. In order to develop the CNT-PDMS composite film, a high-temperature chemical vapor deposition (HTCVD) method has been commonly used so far to grow CNT and then produce a CNT-PDMS composite structure. Here, instead of the complex HTCVD, we use a mixed solution of hydrophobic multi-walled CNT and dimethylformamid (DMF) and fabricate a solution-processed CNT-PDMS composite film over a spherically concave substrate, i.e. a focal energy converter. As the solution process can be applied over a large area, we could easily fabricate the focal transmitter that focuses the photoacoustic output at the moment of generation from the CNT-PDMS composite layer. With this method, we developed photoacoustic energy converters with a large diameter (>25 mm) and a long focal length (several cm). The lens performance was characterized in terms of output pressure amplitude for an incident pulsed laser energy and focal spot dimension in both lateral and axial. Due to the long focal length, we expect that the new lens can be applied for long-range ultrasonic treatment, e.g. biomedical therapy.

  • PDF

Depth and viewing-angle enhanced 3D-2D convertible display system using multiple display devices and a lens array

  • Choi, Hee-Jin;Kim, Yun-Hee;Kim, Joo-Hwan;Cho, Seong-Woo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1565-1568
    • /
    • 2006
  • An improved 3D-2D convertible display system with enhanced depth and viewing angle is proposed. By using the optical structure of an LCD panel, it is possible to enhance the performance of the system and realize the 3D-2D conversion. Some preliminary experimental results will also be provided.

  • PDF

자유공간 광연결을 위한 송수신 모듈의 제작및 성능 분석 (Fabrication and Characterization of the Transmitter and Receiver Modules for Free Space Optical Interconnection)

  • 김대근;김성준
    • 전자공학회논문지A
    • /
    • 제31A권12호
    • /
    • pp.16-22
    • /
    • 1994
  • In this paper, transmitter and receiver modules for free space optical interconnection are implemented and characterized. In the transmitter module, bias circuitry which inject current into the direct modulated laser diode is fabricated and in the receiver module, p-i-n diode is integrated with an MMIC amplifying stage. Laser diode has a direct-modulated bandwidth of 2 GHz at 1.4 Ith bias while p-i-n diode and amplifying stage has a bandwidth of 1.3 GHz and 1.5 GHz, repectively. Optical interconnection has a bandwidth of 1.3 GHz and linearly transmit modulated voltage signal up to 1.5 Vp-p. Measured loss of optical interconnection is 5dB which is composed of optoelectronic conversion loss of 15 dB, electrical impedance mismatch loss of 6.7 dB in transmitter module and gain of 18 dB in receiver module. Seperation between transmitter and receiver can be extended up to 50 cm by using a lens.

  • PDF

4S-Van Design for Application Environment

  • Lee, Seung-Yong;Kim, Seong-Baek;Lee, Jong-Hun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.106-110
    • /
    • 2002
  • 4S-Van is being developed in order to provide the spatial data rapidly and accurately. 4S-Van technique is a system for spatial data construction that is heart of 4S technique. Architecture of 4S-Van system consists of hardware integration part and post-processing part. Hardware part has GPS, INS, color CCD, camera, B/W CCD camera, infrared rays camera, and laser. Software part has GPS/INS integration algorithm, coordinate conversion, lens correction, camera orientation correction, and three dimension position production. In this paper, we suggest that adequate 4S-Van design is needed according to application environment from various test results.

  • PDF

300GHz 대역 1.5Gbit/s 무선 데이터 전송 시스템 구현 (Implementation of An 1.5Gbit/s Wireless Data Transmission System at 300GHz Band)

  • 이원희;정태진
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.1-6
    • /
    • 2011
  • 300GHz 대역의 캐리어 주파수를 이용하여 1.5Gbit/s 무선 데이터 전송 시스템을 구현하였다. RF Front-end는 송수신기 각각 쇼트키 다이오드 서브하모닉 믹서, 주파수 3배기, 혼안테나로 구성하였다. 송신기 및 수신기에 사용된 서브하모닉 믹서의 LO 주파수는 각각 150GHz, 156GHz이다. 변조방식은 ASK(Amplitude Shift Keying)이며, 수신기에서는 헤테로다인 방식의 Envelope 검출 방식을 사용하였다. 서브하모닉 믹서의 변환 손실은 9.8dB, 시스템 손실은 1.2dB로 측정되었다. HD-SDI 형식을 갖는 1.5Gbit/s 비디오 신호를 송신기 출력 $20{\mu}W$에서 광학 렌즈 없이 40cm까지, 광학 렌즈를 포함하여 4.2m까지 HDTV로 전송하였다.

온도에 따른 집광형 태양전지의 성능에 관한 실험적 연구 (An Experimental Study on the Performance of a Concentrating Photovoltaic Cell as a Function of Temperature)

  • 신재혁;이승신;김상민;부준홍
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.96-101
    • /
    • 2012
  • An experimental study was conducted to investigate the performance of a concentrating photovoltaic cell (CPV) against temperature. It is know that a high efficiency of a CPV can be achieved only with proper cell temperature as well as high concentration ratio (CR). This study is concerned with appropriate cooling condition for a liquid-convection cooler for the best performance of a specific CPV. A series of experiments was conducted in a range of cell temperatures as a result of varying cooling conditions, while the concentration ratio was 390 and the solar irradiation flux was higher than 900 $W/m^2$ in outdoor environment. The CPV had a planar dimension of 10 by 10 mm. A Fresnel lens was used as a concentrator, of which the dimension was 221 mm(W) ${\times}$ 221 mm(L) ${\times}$ 3 mm(t) and the transmissivity was known to be 0.8. The cooler was attached to the bottom side of the CPV and had a contact area of 21 mm(W) ${\times}$ 26 mm(L), which was identical to the size of the base plate of the CPV. The coolant temperature was controlled by an isothermal bath and the flow rate was controlled and measured by a flowmeter. The experimental results showed that the average of power efficiency of the CPV decreased from 28.6 % to 24.7 % as the cell temperature increased from $36^{\circ}C$ to $97^{\circ}C$. An appropriate cooling method of a CPV might increase the power conversion efficiency by about 4% for the same concentration ratio. Discussion is included from the viewpoint of the combined efficiency in addition to the power efficiency.

  • PDF