• Title/Summary/Keyword: Conversational Data

Search Result 71, Processing Time 0.03 seconds

Implementation of a Chatbot Application for Restaurant recommendation using Statistical Word Comparison Method (통계적 단어 대조를 이용한 음식점 추천 챗봇 애플리케이션 구현)

  • Min, Dong-Hee;Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 2019
  • A chatbot is an important area of mobile service, which understands informal data of a user as a conversational form and provides a customized service information for user. However, there is still a lack of a service way to fully understand the user's natural language typed query dialogue. Therefore, in this paper, we extract meaningful words, such a region, a food category, and a restaurant name from user's dialogue sentences for recommending a restaurant. and by comparing the extracted words against the contents of the knowledge database that is built from the hashtag for recommending a restaurant in SNS, and provides user target information having statistically much the word-similarity. In order to evaluate the performance of the restaurant recommendation chatbot system implemented in this paper, we measured the accessibility of various user query information by constructing a web-based mobile environment. As a results by comparing a previous similar system, our chabot is reduced by 37.2% and 73.3% with respect to the touch-count and the cutaway-count respectively.

A Study on Simulation-Based Collaborative E-Learning System for Security Education in Medical Convergence Industry (의료융합산업 보안교육을 위한 시뮬레이션 기반 협동형 이러닝 시스템 연구)

  • Kim, Yanghoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.11
    • /
    • pp.339-344
    • /
    • 2020
  • During COVID-19, education industry is organizing the concept of 'Edutech', which has evolved one step further from the existing e-Learning, by introducing various intelligent information technologues based on the core technology of the 4th industrial revolution and spreading it through diverse contents. Meanwhile, each industries are creating new industries by applying new technology to existing businesses and ask for needs of cultivating human resources who understand the existing traditional ICT technology and industrial business which can solve a newly rising problems. However, it is difficult to build contents for cultivating such human resources with the existing e-learning of transferring knowledge by one-way or some two-way commnication system which has established some interactive conversational system. Accordingly, this study conducted a research on a cooperative e-learning system that enables educators to communicate with learners in real time and allows problem-solving education based on the existing two-way communication system. As a result, frame for contents and prototype was developedp and artially applied to the actual class and conducted an efficiency analysis, which resulted in the validation of being applied to the actual class as a simulation-based cooperative content.

Negotiation in Conversations between Native Instructors and Non-native Students of English (영어원어민 강사와 비원어민 학생 간의 대화에서 의사소통을 위한 협상)

  • Cha, Mi-Yang
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.158-165
    • /
    • 2022
  • Journal of Convergence for Information Technology. This study explores how native speakers (NSs) and non-native speakers (NNSs) of English negotiate meanings during conversational interactions to achieve successful communication. This study involved 40 participants: 20 native English speakers and 20 Korean university students. The participants were divided into 20 pairs, with each pair consisting of one NS and one NNS. Tasks for conversation were given and the execution recorded in order to collect data. 37 recorded conversations were transcribed and used for analysis, including statistical analyses. Results showed that both NSs and NNSs mutually put in effort for successful communication. While NSs mostly played the role of leading the natural flow of the conversation, encouraging their non-native interlocutors to speak, NNSs used various strategies to compensate for their lack of linguistic competence in the target language. NNSs employed a wide range of communicative strategies to keep the conversation going. The results of this study contribute to a better understanding of interactions between NSs and NNSs and yield pedagogical implications.

Low frequency critical bandwidths of Korean normal hearing adults (한국 정상 성인의 저주파수 임계 주파수 대역 특성에 관한 연구)

  • Moon, Jihyun;Jeon, Kyongeon;Lim, Dukhwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.1
    • /
    • pp.70-75
    • /
    • 2022
  • The critical bandwidth represents response interactions with respect to a signal tone and their neighboring bands. This study was to analyze the critical bandwidths of a clinically important 500 Hz tone in Korean young male and female subjects (male = 10, female = 10) at a conversational level (60 dB HL). Data were measured with notched band noise and two alternative forced choice methods. Results showed that the critical bandwidth was slightly greater (95 Hz) than the previous Western measures. There were no statistically significant differences in gender, nor were there any significant differences in lateralization of the ear (p > 0.05). These results may have implications in optimizing effective tinnitus masking or the related clinical applications.

Research on Developing a Conversational AI Callbot Solution for Medical Counselling

  • Won Ro LEE;Jeong Hyon CHOI;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.9-13
    • /
    • 2023
  • In this study, we explored the potential of integrating interactive AI callbot technology into the medical consultation domain as part of a broader service development initiative. Aimed at enhancing patient satisfaction, the AI callbot was designed to efficiently address queries from hospitals' primary users, especially the elderly and those using phone services. By incorporating an AI-driven callbot into the hospital's customer service center, routine tasks such as appointment modifications and cancellations were efficiently managed by the AI Callbot Agent. On the other hand, tasks requiring more detailed attention or specialization were addressed by Human Agents, ensuring a balanced and collaborative approach. The deep learning model for voice recognition for this study was based on the Transformer model and fine-tuned to fit the medical field using a pre-trained model. Existing recording files were converted into learning data to perform SSL(self-supervised learning) Model was implemented. The ANN (Artificial neural network) neural network model was used to analyze voice signals and interpret them as text, and after actual application, the intent was enriched through reinforcement learning to continuously improve accuracy. In the case of TTS(Text To Speech), the Transformer model was applied to Text Analysis, Acoustic model, and Vocoder, and Google's Natural Language API was applied to recognize intent. As the research progresses, there are challenges to solve, such as interconnection issues between various EMR providers, problems with doctor's time slots, problems with two or more hospital appointments, and problems with patient use. However, there are specialized problems that are easy to make reservations. Implementation of the callbot service in hospitals appears to be applicable immediately.

Method of ChatBot Implementation Using Bot Framework (봇 프레임워크를 활용한 챗봇 구현 방안)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.1
    • /
    • pp.56-61
    • /
    • 2022
  • In this paper, we classify and present AI algorithms and natural language processing methods used in chatbots. A framework that can be used to implement a chatbot is also described. A chatbot is a system with a structure that interprets the input string by constructing the user interface in a conversational manner and selects an appropriate answer to the input string from the learned data and outputs it. However, training is required to generate an appropriate set of answers to a question and hardware with considerable computational power is required. Therefore, there is a limit to the practice of not only developing companies but also students learning AI development. Currently, chatbots are replacing the existing traditional tasks, and a practice course to understand and implement the system is required. RNN and Char-CNN are used to increase the accuracy of answering questions by learning unstructured data by applying technologies such as deep learning beyond the level of responding only to standardized data. In order to implement a chatbot, it is necessary to understand such a theory. In addition, the students presented examples of implementation of the entire system by utilizing the methods that can be used for coding education and the platform where existing developers and students can implement chatbots.

The fundamental frequency (f0) distribution of Korean speakers in a dialogue corpus using Praat and R (Praat과 R로 분석한 한국인 대화 음성 말뭉치의 fundamental frequency(f0)값 분포)

  • Byunggon Yang
    • Phonetics and Speech Sciences
    • /
    • v.15 no.3
    • /
    • pp.17-25
    • /
    • 2023
  • This study examines the fundamental frequency(f0) distribution of 2,740 Korean speakers in a dialogue speech corpus. Praat and R were used for the collection and analysis of acoustical f0 data after removing extreme values considering the interquartile f0 range of the intonational phrases produced by each individual speaker. Results showed that the average f0 value of all speakers was 185 Hz and the median value was 187 Hz. The f0 data showed a positively skewed distribution of 0.11, and the kurtosis was -0.09, which is close to the normal distribution. The pitch values of daily conversations varied in the range of 238 Hz. Further examination of the male and female groups showed distinct median f0 values: 114 Hz for males and 199 Hz for females. A t-test between the two groups yielded a significant difference. The skewness representing the distribution shape was 1.24 for the male group and 0.58 for the female group. The kurtosis was 5.21 and 3.88 for the male and female groups, and the male group values appeared leptokurtic. A regression analysis between the median f0 and age yielded a slope of 0.15 for the male group and -0.586 for the female group, which indicated a divergent relationship. In conclusion, a normative f0 distribution of different Korean age and sex groups can be examined in the conversational speech corpus recorded by a massive number of participants. However, more rigorous data might be required to define a relation between age and f0 values.

Understanding of Generative Artificial Intelligence Based on Textual Data and Discussion for Its Application in Science Education (텍스트 기반 생성형 인공지능의 이해와 과학교육에서의 활용에 대한 논의)

  • Hunkoog Jho
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.3
    • /
    • pp.307-319
    • /
    • 2023
  • This study aims to explain the key concepts and principles of text-based generative artificial intelligence (AI) that has been receiving increasing interest and utilization, focusing on its application in science education. It also highlights the potential and limitations of utilizing generative AI in science education, providing insights for its implementation and research aspects. Recent advancements in generative AI, predominantly based on transformer models consisting of encoders and decoders, have shown remarkable progress through optimization of reinforcement learning and reward models using human feedback, as well as understanding context. Particularly, it can perform various functions such as writing, summarizing, keyword extraction, evaluation, and feedback based on the ability to understand various user questions and intents. It also offers practical utility in diagnosing learners and structuring educational content based on provided examples by educators. However, it is necessary to examine the concerns regarding the limitations of generative AI, including the potential for conveying inaccurate facts or knowledge, bias resulting from overconfidence, and uncertainties regarding its impact on user attitudes or emotions. Moreover, the responses provided by generative AI are probabilistic based on response data from many individuals, which raises concerns about limiting insightful and innovative thinking that may offer different perspectives or ideas. In light of these considerations, this study provides practical suggestions for the positive utilization of AI in science education.

A Study on the Effect of Caregiver Burden on Suicidal Ideation among Caregiver for the Elderly with Dementia (치매노인의 증상정도가 부양자의 자살생각에 미치는 영향에 대한 연구: 부양부담의 매개효과를 중심으로)

  • Kim, JaeYop;Kim, JoonBeom;Jang, DaeYeon;Song, InHan
    • 한국노년학
    • /
    • v.36 no.3
    • /
    • pp.883-903
    • /
    • 2016
  • The purpose of the study is examining the mediation effect of caregiver burden's segmentalized sub factors between dementia caregivers on the relationship between Symptom extent of dementia patients and Suicidal Ideation of dementia caregiver, and suggesting social welfare intervention methods for dementia caregiver The survey is targeted to demented elderly people and caregivers, and currently using medical care institution and day care center in Seoul, Gyeonggi Province and Pusan city. As a result of the survey, 415 cases were collected for the final analysis. In data analysis process, we used SPSS 21.0 for the mediation effect of conversational satisfaction and its significance, and the results are following. First, 21% of the caregivers responded that they had thoughts of suicide in the past year. Second, Symptom extent of dementia patients was positively related to caregiver burden. Third, worse in family relationships, which is sub factors of mediate variable, has partial mediate effect on the model. Based on these outcomes, we suggest the importance and necessity of improved approach about dementia elderly and caregiver between elderly couple as way to reduce caregiver burden and proposed social work-based intervention program for enhancing this.

Artificial Intelligence for Assistance of Facial Expression Practice Using Emotion Classification (감정 분류를 이용한 표정 연습 보조 인공지능)

  • Dong-Kyu, Kim;So Hwa, Lee;Jae Hwan, Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1137-1144
    • /
    • 2022
  • In this study, an artificial intelligence(AI) was developed to help with facial expression practice in order to express emotions. The developed AI used multimodal inputs consisting of sentences and facial images for deep neural networks (DNNs). The DNNs calculated similarities between the emotions predicted by the sentences and the emotions predicted by facial images. The user practiced facial expressions based on the situation given by sentences, and the AI provided the user with numerical feedback based on the similarity between the emotion predicted by sentence and the emotion predicted by facial expression. ResNet34 structure was trained on FER2013 public data to predict emotions from facial images. To predict emotions in sentences, KoBERT model was trained in transfer learning manner using the conversational speech dataset for emotion classification opened to the public by AIHub. The DNN that predicts emotions from the facial images demonstrated 65% accuracy, which is comparable to human emotional classification ability. The DNN that predicts emotions from the sentences achieved 90% accuracy. The performance of the developed AI was evaluated through experiments with changing facial expressions in which an ordinary person was participated.