• Title/Summary/Keyword: Convergence science

Search Result 8,500, Processing Time 0.033 seconds

Relationship between Nursing Students' Nursing Competency, Clinical Reasoning Competence and Empathy Ability according to the Enneagram Center of Power (에니어그램 힘의중심에 따른 간호대학생의 간호역량, 임상추론역량 및 공감능력의 관계)

  • Shin Eun Sun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.373-382
    • /
    • 2024
  • This study attempted to identify the relationship between nursing competency, clinical reasoning competence, and empathy ability according to the center of enneagram power for nursing students. The subjects of the study were 218 students enrolled in the department of nursing at two universities located in one region, data collection was conducted from 16 October to 27 October 2023. Data analysis was performed using SPSS/WIN version 26.0 program, descriptive statistics, and difference verification were analyzed by t-test, ANOVA, pearson's correlation coefficient, Results, The enneagram personality type of the subjects of this study was the most common type 9. And in the enneagram center of power, the instinct-centered type had the highest nursing competence, the thought-centered type had the highest clinical reasoning competence, and the emotion-centered type had the highest empathy ability. In addition, nursing competence and clinical reasoning competence showed a significant positive correlation, and clinical reasoning competence and empathy ability were also found to be positively correlated. Therefore, it is important to continue to develop and apply individualized competency building programs that reflect personality type tests to nursing students. In addition, the higher the empathy ability, the higher the clinical reasoning competence, so it is thought that it is necessary to develop a standardized curriculum that can improve nursing competence and clinical reasoning competence and verify its effectiveness.

Incremental Image Noise Reduction in Coronary CT Angiography Using a Deep Learning-Based Technique with Iterative Reconstruction

  • Jung Hee Hong;Eun-Ah Park;Whal Lee;Chulkyun Ahn;Jong-Hyo Kim
    • Korean Journal of Radiology
    • /
    • v.21 no.10
    • /
    • pp.1165-1177
    • /
    • 2020
  • Objective: To assess the feasibility of applying a deep learning-based denoising technique to coronary CT angiography (CCTA) along with iterative reconstruction for additional noise reduction. Materials and Methods: We retrospectively enrolled 82 consecutive patients (male:female = 60:22; mean age, 67.0 ± 10.8 years) who had undergone both CCTA and invasive coronary artery angiography from March 2017 to June 2018. All included patients underwent CCTA with iterative reconstruction (ADMIRE level 3, Siemens Healthineers). We developed a deep learning based denoising technique (ClariCT.AI, ClariPI), which was based on a modified U-net type convolutional neural net model designed to predict the possible occurrence of low-dose noise in the originals. Denoised images were obtained by subtracting the predicted noise from the originals. Image noise, CT attenuation, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were objectively calculated. The edge rise distance (ERD) was measured as an indicator of image sharpness. Two blinded readers subjectively graded the image quality using a 5-point scale. Diagnostic performance of the CCTA was evaluated based on the presence or absence of significant stenosis (≥ 50% lumen reduction). Results: Objective image qualities (original vs. denoised: image noise, 67.22 ± 25.74 vs. 52.64 ± 27.40; SNR [left main], 21.91 ± 6.38 vs. 30.35 ± 10.46; CNR [left main], 23.24 ± 6.52 vs. 31.93 ± 10.72; all p < 0.001) and subjective image quality (2.45 ± 0.62 vs. 3.65 ± 0.60, p < 0.001) improved significantly in the denoised images. The average ERDs of the denoised images were significantly smaller than those of originals (0.98 ± 0.08 vs. 0.09 ± 0.08, p < 0.001). With regard to diagnostic accuracy, no significant differences were observed among paired comparisons. Conclusion: Application of the deep learning technique along with iterative reconstruction can enhance the noise reduction performance with a significant improvement in objective and subjective image qualities of CCTA images.

Effects of impact by mechanical harvesting on storability of onions (Allium cepa L.) (기계수확 시 발생한 충격이 양파(Allium cepa L.)의 저장성에 미치는 영향)

  • Young-Kyeong Kwon;Yong-Jae Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.811-821
    • /
    • 2023
  • This study investigated the storability of onions according to manual and mechanical harvesting. Moreover, we simulated the onion-to-onion impact during the mechanical harvesting process and investigated the storability after artificially subjecting the onions to impact treatment. The onion harvesting methods included hand plucking + manual collection, digger + manual, and digger + mechanical collection. The maximum impact height during the mechanical harvesting process was 0.5 m. Immediately after harvesting, no significant difference in the bruise and wound rate among the harvesting methods was observed. Any increased bruise or wound rate because of mechanical harvesting was presumed to be influenced by soil conditions, such as the presence of gravel, and machine operation factors. Furthermore, the storability during the 8.5 months storage showed no significant difference according to the harvesting methods. In treatments by simulating the impacts during the mechanical harvesting process, the impact heights were 0.0 m (0.0 J), 0.25 m (0.86 J), 0.5 m (1.72 J), and 0.75 m (2.57 J), each performed once, and four times at the same position (3.43 J) and four times at different positions (3.43 J) at 0.25 m. Throughout all the treatments, there were no significant differences in the storability during the 8.5 months storage period.

Analysis and Study for Appropriate Deep Neural Network Structures and Self-Supervised Learning-based Brain Signal Data Representation Methods (딥 뉴럴 네트워크의 적절한 구조 및 자가-지도 학습 방법에 따른 뇌신호 데이터 표현 기술 분석 및 고찰)

  • Won-Jun Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.137-142
    • /
    • 2024
  • Recently, deep learning technology has become those methods as de facto standards in the area of medical data representation. But, deep learning inherently requires a large amount of training data, which poses a challenge for its direct application in the medical field where acquiring large-scale data is not straightforward. Additionally, brain signal modalities also suffer from these problems owing to the high variability. Research has focused on designing deep neural network structures capable of effectively extracting spectro-spatio-temporal characteristics of brain signals, or employing self-supervised learning methods to pre-learn the neurophysiological features of brain signals. This paper analyzes methodologies used to handle small-scale data in emerging fields such as brain-computer interfaces and brain signal-based state prediction, presenting future directions for these technologies. At first, this paper examines deep neural network structures for representing brain signals, then analyzes self-supervised learning methodologies aimed at efficiently learning the characteristics of brain signals. Finally, the paper discusses key insights and future directions for deep learning-based brain signal analysis.

Consideration of Technical Direction of Software Defined Vehicle Integration with C-ITS based on the analysis of In-Vehicle Infotainments (차량 인포테인먼트 아키텍처 분석 기반 향후 협력 지능형 교통 체계와 SDV 연동 방향성에 대한 고찰)

  • Joon-Young Kim;Young-Eun Kim;Won-Jun Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.149-156
    • /
    • 2024
  • The increased intelligence and speed of vehicle infotainment, whose main purpose was emergency and external communication, is showing the potential for application to various services such as navigation and autonomous driving. In particular, functionality for linking external devices and infrastructure is being strengthened due to advances in communication and networks. Under this trend, it is necessary to consider the direction of linkage with the cooperative intelligent transportation system (C-ITS) for advanced vehicle services and driving. In addition, in the case of automobiles, future vehicle development concepts are being established based on the concept of software-defined vehicles (SDVs) in line with the trend of electrification beyond telematics and infotainment advancements, and such SDV linkage must be considered at the same time. In this paper, we consider the future direction of ITS and SDV linkage based on analysis of vehicle infotainment structure. First, for this purpose, we analyze the existing vehicle infotainment structure and architecture, and also present the structure of the SDV linked to it. Based on this, analysis and implications are drawn on the possibility of applying and linking standard-based C-ITS services with SDV devices.

Imaging Findings of Peripheral Arterial Disease on Lower-Extremity CT Angiography Using a Virtual Monoenergetic Imaging Algorithm (가상의 단일 에너지 영상 재구성 기법을 이용한 하지 단층촬영 혈관조영술에서 말초 동맥 질환 영상 소견)

  • Jun Seong Kim;So Hyun Park;Suyoung Park;Jung Han Hwang;Jeong Ho Kim;Seong Yong Pak;Kihyun Lee;Bernhard Schmidt
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.5
    • /
    • pp.1032-1045
    • /
    • 2022
  • Peripheral arterial disease (PAD) is common in elderly patients. Lower-extremity CT angiography (LE-CTA) can be useful for detecting PAD and planning its treatment. PAD can also be accurately evaluated on reconstructed monoenergetic images (MEIs) from low kiloelectron volt (keV) to high keV images using dual-energy CT. Low keV images generally provide higher contrast than high keV images but also feature more severe image noise. The noise-reduced virtual MEI reconstruction algorithm, called the Mono+ technique, was recently introduced to overcome such image noise. Therefore, this pictorial review aimed to present the imaging findings of PAD on LE-CTA and compare low and high keV images with those subjected to the Mono+ technique. We found that, in many cases, the overall and segmental image qualities were better and metal artifacts and venous contamination were decreased in the high keV images.

Radiology Residents' Independent Diagnosis of Appendicitis Using 2-mSv Computed Tomography: A Secondary Analysis of a Large Pragmatic Randomized Trial

  • Jungheum Cho;Hae Young Kim;Seungjae Lee;Ji Hoon Park;Kyoung Ho Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.6
    • /
    • pp.529-540
    • /
    • 2023
  • Objective: To compare the diagnostic performance and clinical outcomes of 2-mSv computed tomography (CT) and conventional-dose CT (CDCT), following radiology residents' interpretation of CT examinations for suspected appendicitis. Materials and Methods: Altogether, 3074 patients with suspected appendicitis aged 15-44 years (28 ± 9 years, 1672 females) from 20 hospitals were randomly assigned to the 2-mSv CT (n = 1535) or CDCT (n = 1539) groups in a pragmatic trial from December 2013 and August 2016. Overall, 107 radiology residents participated in the trial as readers in the form of daily practice after online training for 2-mSv CT. They made preliminary CT reports, which were later finalized by attending radiologists via addendum reports, for 640 and 657 patients in the 2-mSv CT and CDCT groups, respectively. We compared the diagnostic performance of the residents, discrepancies between preliminary and addendum reports, and clinical outcomes between the two groups. Results: Patient characteristics were similar between the 640 and 657 patients. Residents' diagnostic performance was not significantly different between the 2-mSv CT and CDCT groups, with a sensitivity of 96.0% and 97.1%, respectively (difference [95% confidence interval {CI}], -1.1% [-4.9%, 2.6%]; P = 0.69) and specificity of 93.2% and 93.1%, respectively (0.1% [-3.6%, 3.7%]; P > 0.99). The 2-mSv CT and CDCT groups did not significantly differ in discrepancies between the preliminary and addendum reports regarding the presence of appendicitis (3.3% vs. 5.2%; -1.9% [-4.2%, 0.4%]; P = 0.12) and alternative diagnosis (5.5% vs. 6.4%; -0.9% [-3.6%, 1.8%]; P = 0.56). The rates of perforated appendicitis (12.0% vs. 12.6%; -0.6% [-4.3%, 3.1%]; P = 0.81) and negative appendectomies (1.9% vs. 1.1%; 0.8% [-0.7%, 2.3%]; P = 0.33) were not significantly different between the two groups. Conclusion: Diagnostic performance and clinical outcomes were not significantly different between the 2-mSv CT and CDCT groups following radiology residents' CT readings for suspected appendicitis.

Bone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels

  • Pyeong Hwa Kim;Hee Mang Yoon;Jeong Rye Kim;Jae-Yeon Hwang;Jin-Ho Choi;Jisun Hwang;Jaewon Lee;Jinkyeong Sung;Kyu-Hwan Jung;Byeonguk Bae;Ah Young Jung;Young Ah Cho;Woo Hyun Shim;Boram Bak;Jin Seong Lee
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1151-1163
    • /
    • 2023
  • Objective: To develop a deep-learning-based bone age prediction model optimized for Korean children and adolescents and evaluate its feasibility by comparing it with a Greulich-Pyle-based deep-learning model. Materials and Methods: A convolutional neural network was trained to predict age according to the bone development shown on a hand radiograph (bone age) using 21036 hand radiographs of Korean children and adolescents without known bone development-affecting diseases/conditions obtained between 1998 and 2019 (median age [interquartile range {IQR}], 9 [7-12] years; male:female, 11794:9242) and their chronological ages as labels (Korean model). We constructed 2 separate external datasets consisting of Korean children and adolescents with healthy bone development (Institution 1: n = 343; median age [IQR], 10 [4-15] years; male: female, 183:160; Institution 2: n = 321; median age [IQR], 9 [5-14] years; male: female, 164:157) to test the model performance. The mean absolute error (MAE), root mean square error (RMSE), and proportions of bone age predictions within 6, 12, 18, and 24 months of the reference age (chronological age) were compared between the Korean model and a commercial model (VUNO Med-BoneAge version 1.1; VUNO) trained with Greulich-Pyle-based age as the label (GP-based model). Results: Compared with the GP-based model, the Korean model showed a lower RMSE (11.2 vs. 13.8 months; P = 0.004) and MAE (8.2 vs. 10.5 months; P = 0.002), a higher proportion of bone age predictions within 18 months of chronological age (88.3% vs. 82.2%; P = 0.031) for Institution 1, and a lower MAE (9.5 vs. 11.0 months; P = 0.022) and higher proportion of bone age predictions within 6 months (44.5% vs. 36.4%; P = 0.044) for Institution 2. Conclusion: The Korean model trained using the chronological ages of Korean children and adolescents without known bone development-affecting diseases/conditions as labels performed better in bone age assessment than the GP-based model in the Korean pediatric population. Further validation is required to confirm its accuracy.

Appendiceal Visualization on 2-mSv CT vs. Conventional-Dose CT in Adolescents and Young Adults with Suspected Appendicitis: An Analysis of Large Pragmatic Randomized Trial Data

  • Jungheum Cho;Youngjune Kim;Seungjae Lee;Hooney Daniel Min;Yousun Ko;Choong Guen Chee;Hae Young Kim;Ji Hoon Park;Kyoung Ho Lee;LOCAT Group
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.413-425
    • /
    • 2022
  • Objective: We compared appendiceal visualization on 2-mSv CT vs. conventional-dose CT (median 7 mSv) in adolescents and young adults and analyzed the undesirable clinical and diagnostic outcomes that followed appendiceal nonvisualization. Materials and Methods: A total of 3074 patients aged 15-44 years (mean ± standard deviation, 28 ± 9 years; 1672 female) from 20 hospitals were randomized to the 2-mSv CT or conventional-dose CT group (1535 vs. 1539) from December 2013 through August 2016. A total of 161 radiologists from 20 institutions prospectively rated appendiceal visualization (grade 0, not identified; grade 1, unsure or partly visualized; and grade 2, clearly and entirely visualized) and the presence of appendicitis in these patients. The final diagnosis was based on CT imaging and surgical, pathologic, and clinical findings. We analyzed undesirable clinical or diagnostic outcomes, such as negative appendectomy, perforated appendicitis, more extensive than simple appendectomy, delay in patient management, or incorrect CT diagnosis, which followed appendiceal nonvisualization (defined as grade 0 or 1) and compared the outcomes between the two groups. Results: In the 2-mSv CT and conventional-dose CT groups, appendiceal visualization was rated as grade 0 in 41 (2.7%) and 18 (1.2%) patients, respectively; grade 1 in 181 (11.8%) and 81 (5.3%) patients, respectively; and grade 2 in 1304 (85.0%) and 1421 (92.3%) patients, respectively (p < 0.001). Overall, undesirable outcomes were rare in both groups. Compared to the conventional-dose CT group, the 2-mSv CT group had slightly higher rates of perforated appendicitis (1.1% [17] vs. 0.5% [7], p = 0.06) and false-negative diagnoses (0.4% [6] vs. 0.0% [0], p = 0.01) following appendiceal nonvisualization. Otherwise, these two groups were comparable. Conclusion: The use of 2-mSv CT instead of conventional-dose CT impairs appendiceal visualization in more patients. However, appendiceal nonvisualization on 2-mSv CT rarely leads to undesirable clinical or diagnostic outcomes.

Diagnostic Accuracy of CT for Evaluating Circumferential Resection Margin Status in Resectable or Borderline Resectable Pancreatic Head Cancer: A Prospective Study Using Axially Sliced Surgical Pathologic Correlation

  • Ji Hoon Park;Yoo-Seok Yoon;Seungjae Lee;Hae Young Kim;Ho-Seong Han;Jun Suh Lee;Won Chang;Haeryoung Kim;Hee Young Na;Seungyeob Han;Kyoung Ho Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.3
    • /
    • pp.322-332
    • /
    • 2022
  • Objective: CT plays a central role in determining the resectability of pancreatic cancer, which directs the use of neoadjuvant therapy. This study aimed to assess the diagnostic accuracy of CT in predicting circumferential resection margin (CRM) involvement in patients with resectable or borderline resectable pancreatic head cancer. Materials and Methods: Seventy-seven patients who were scheduled for upfront surgery for resectable or borderline resectable pancreatic head cancer were prospectively enrolled, and 75 patients (38 male and 37 female; mean age ± standard deviation, 68 ± 11 years) were finally analyzed. The CRM status was evaluated separately for the superior mesenteric artery (SMA) and posterior and superior mesenteric vein/portal vein (SMV/PV) margins. Three independent radiologists reviewed the preoperative CT images and evaluated the resection margin status. The reference standard for CRM status was pathologic examination of pancreaticoduodenectomy specimens in an axial plane perpendicular to the axis of the second portion of the duodenum. The diagnostic accuracy of CT was assessed for overall CRM involvement, defined as involvement of the SMA or posterior margins (per-patient analysis), and involvement of each of the three resection margins (per-margin analysis). The data were pooled using a crossed random effects model. Results: Forty patients had pathologically confirmed overall CRM involvement in pancreatic cancer, while CRM involvement was not seen in 35 patients. For overall CRM involvement, the pooled sensitivity and specificity were 15% (95% confidence interval: 7%-49%) and 99% (96%-100%), respectively. For each of the resection margins, the pooled sensitivity and specificity were 14% (9%-54%) and 99% (38%-100%) for the SMA margin, 12% (8%-46%) and 99% (97%-100%) for the posterior margin; and 37% (29%-53%) and 96% (31%-100%) for the SMV/PV margin, respectively. Conclusion: CT showed very high specificity but low sensitivity in predicting pathological CRM involvement in pancreatic cancer.