• Title/Summary/Keyword: Convergence Condition

Search Result 1,709, Processing Time 0.023 seconds

TWO-LAYER MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR TWO-DIMENSIONAL PROBLEMS

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.477-488
    • /
    • 2012
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the mixed interface condition, controlled by a parameter, can optimize SAM's convergence rate. In [8], one introduced the two-layer multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. In this paper, we present a method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

SOME WEIGHTED APPROXIMATION PROPERTIES OF NONLINEAR DOUBLE INTEGRAL OPERATORS

  • Uysal, Gumrah;Mishra, Vishnu Narayan;Serenbay, Sevilay Kirci
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.483-501
    • /
    • 2018
  • In this paper, we present some recent results on weighted pointwise convergence and the rate of pointwise convergence for the family of nonlinear double singular integral operators in the following form: $$T_{\eta}(f;x,y)={\int}{\int\limits_{{\mathbb{R}^2}}}K_{\eta}(t-x,\;s-y,\;f(t,s))dsdt,\;(x,y){\in}{\mathbb{R}^2},\;{\eta}{\in}{\Lambda}$$, where the function $f:{\mathbb{R}}^2{\rightarrow}{\mathbb{R}}$ is Lebesgue measurable on ${\mathbb{R}}^2$ and ${\Lambda}$ is a non-empty set of indices. Further, we provide an example to support these theoretical results.

MAXIMUM PRINCIPLE, CONVERGENCE OF SEQUENCES AND ANGULAR LIMITS FOR HARMONIC BLOCH MAPPINGS

  • Qiao, Jinjing;Gao, Hongya
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1591-1603
    • /
    • 2014
  • In this paper, we investigate maximum principle, convergence of sequences and angular limits for harmonic Bloch mappings. First, we give the maximum principle of harmonic Bloch mappings, which is a generalization of the classical maximum principle for harmonic mappings. Second, by using the maximum principle of harmonic Bloch mappings, we investigate the convergence of sequences for harmonic Bloch mappings. Finally, we discuss the angular limits of harmonic Bloch mappings. We show that the asymptotic values and angular limits are identical for harmonic Bloch mappings, and we further prove a result that applies also if there is no asymptotic value. A sufficient condition for a harmonic Bloch mapping has a finite angular limit is also given.

Implementation of an Adaptive Genetic Algorithm Processor for Evolvable Hardware (진화 시스템을 위한 유전자 알고리즘 프로세서의 구현)

  • 정석우;김현식;김동순;정덕진
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.265-276
    • /
    • 2004
  • Genetic Algorithm(GA), that is shown stable performance to find an optimal solution, has been used as a method of solving large-scaled optimization problems with complex constraints in various applications. Since it takes so much time to execute a long computation process for iterative evolution and adaptation. In this paper, a hardware-based adaptive GA was proposed to reduce the serious computation time of the evolutionary process and to improve the accuracy of convergence to optimal solution. The proposed GA, based on steady-state model among continuos generation model, performs an adaptive mutation process with consideration of the evolution flow and the population diversity. The drawback of the GA, premature convergence, was solved by the proposed adaptation. The Performance improvement of convergence accuracy for some kinds of problem and condition reached to 5-100% with equivalent convergence speed to high-speed algorithm. The proposed adaptive GAP(Genetic Algorithm Processor) was implemented on FPGA device Xilinx XCV2000E of EHW board for face recognition.

An Adaptive Line Enhancer Using Lattice Notch Filters (격자형 노치 필터를 이용한 정현파 검출기)

  • 조남익;최종호;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.719-726
    • /
    • 1987
  • In this paper, an adaptive IIR (infinite impulse response) notch filter of lattice type is constructed and its adaptation algorithm is proposed for the detection and retrieval of a sine wave signal embedded in noise. A modified method which adapts only one coefficient of the filter is also suggested. All these methods adapt the coefficients while keepting the poles of the filter inside the unit circle on z-plane, and thus they satisfy the condition on the stability of the IIR filter after it has converged. To investigate the convergence characteristics of these methods such as convergence speed and output S/N ratio, intensive computer simulation has been performed by varying the frequency of the sine wave and the input S/N ratio. And the results of the simulation have been compared to those of Rao and Kung's which shows relatively fast convergence speed. The methods proposed here, especially the second one. shows faster convergence speed and higher output S/N ratio than the Rao and Kung's.

  • PDF

A Numerical Study on Efficiency and Convergence for Various Implicit Approximate Factorization Algorithms in Compressible Flow Field. (다양한 근사인수분해 알고리즘을 이용하여 압축성 유동장의 수렴성 및 유용성에 대한 연구)

  • Gwon Chang-O;Song Dong-Ju
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.17-22
    • /
    • 1999
  • Convergence characteristics and efficiency of three implicit approximate factorization schemes(ADI, DDADI and MAF) are examined using 2-Dimensional compressible upwind Navier-Stokes code. Second-order CSCM(Conservative Supra Characteristic Method) upwind flux difference splitting method with Fromm scheme is used for the right-hand side residual evaluation, while generally first-order upwind differencing is used for the implicit operator on the left-hand side. Convergence studies are performed using an example of the flow past a NACA0012 airfoil at steady transonic flow condition, i. e. Mach number 0.8 at $1.25^{\circ}$ angle of attack. The results were compared with other computational results in order to validate the current numerical analysis. The results from the implicit AF algorithms were compared well in low surface with the other computational results; however, not well in upper surface. It might be due to lack of the grid around the shock position. Because the algorithm minimizes the errors of the approximate decomposition, the improved convergence rate with MAF were observed.

  • PDF

PID Type Iterative Learning Control with Optimal Gains

  • Madady, Ali
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • Iterative learning control (ILC) is a simple and effective method for the control of systems that perform the same task repetitively. ILC algorithm uses the repetitiveness of the task to track the desired trajectory. In this paper, we propose a PID (proportional plus integral and derivative) type ILC update law for control discrete-time single input single-output (SISO) linear time-invariant (LTI) systems, performing repetitive tasks. In this approach, the input of controlled system in current cycle is modified by applying the PID strategy on the error achieved between the system output and the desired trajectory in a last previous iteration. The convergence of the presented scheme is analyzed and its convergence condition is obtained in terms of the PID coefficients. An optimal design method is proposed to determine the PID coefficients. It is also shown that under some given conditions, this optimal iterative learning controller can guarantee the monotonic convergence. An illustrative example is given to demonstrate the effectiveness of the proposed technique.

Performance Improvement of the Fractionally-Spaced Equalizer with Modified-Multiplication Free Adaptive Filter Algorithm (변형 비분적응필터 알고리즘을 적용한 분할등화기 성능개선)

  • 윤달환;김건호;김명수;임채탁
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.28-34
    • /
    • 1993
  • An algorithm for MMADF(modified multiplication-free adaptive filter) which need not to multiplication arithmatic operation is proposed to improve the performance of FSE (fractionally spaced equalizer) which reduce the ISI(intersymbol interference) in signal transfer channel. The input signals are quantized using DPCM and the reference signals is processed using a first-order linear prediction filter. The convergence properties of Sign. MADF and M-MADF algorithm for updating of the coefficients of a FIR digital filter of the fractionally spaced equalizer (FSE) are investigated and compared with one another. The convergence properties are characterized by the steady state error and the convergence speed. It is shown that the convergence speed of M-MADF is almost same as Sign algorithm and is faster than MADF in the condition of same steady state error. Especially it is very useful for high correlated signals.

  • PDF

Empirical Bayes Test for the Exponential Parameter with Censored Data

  • Wang, Lichun
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.213-228
    • /
    • 2008
  • Using a linear loss function, this paper considers the one-sided testing problem for the exponential distribution via the empirical Bayes(EB) approach. Based on right censored data, we propose an EB test for the exponential parameter and obtain its convergence rate and asymptotic optimality, firstly, under the condition that the censoring distribution is known and secondly, that it is unknown.

ON ITERATIVE APPROXIMATION OF COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS WITH APPLICATIONS

  • Kim, Jong Kyu;Qin, Xiaolong;Lim, Won Hee
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.617-630
    • /
    • 2012
  • In this paper, the problem of iterative approximation of common fixed points of asymptotically nonexpansive is investigated in the framework of Banach spaces. Weak convergence theorems are established. A necessary and sufficient condition for strong convergence is also discussed. As an application of main results, a variational inequality is investigated.