• 제목/요약/키워드: Conventional water treatment process

검색결과 255건 처리시간 0.026초

교차흐름 막결합형 생물반응기에서의 막오염 연구 (Study of membrane fouling in the crossflow MBR system)

  • 최중구;김인철;최남석;홍서표;탁태문
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 추계 총회 및 학술발표회
    • /
    • pp.150-152
    • /
    • 1998
  • Now the lack of water is serious problem all over the world because of the growth of population and expansion of industrial activities. So wastewater recycle and reuse is essential in many countries. One of the most popular wastewater treatment processes is conventional activated sludge system. In spite of significant degree of treatment rate the biological process has some operational difficulties and capital disadvantages. In conventional activated sludge process, sludge settling condition is getting worse in case of sludge bulking, it is common that overall process fails due to wash-out of biomass causing low concentration of MLSS in the aeration tank. Because of the absence of claifier the membrane bioreactor(MBR) process is less affected by such problems.

  • PDF

미량오염물질 관리를 위한 산화 및 흡착 기반 하수 방류수 강화처리 기술의 연구 동향 및 시사점 (Enhanced sewage effluent treatment with oxidation and adsorption technologies for micropollutant control: current status and implications)

  • 최상기;이웅배;김영모;홍석원;손희종;이윤호
    • 상하수도학회지
    • /
    • 제36권2호
    • /
    • pp.59-79
    • /
    • 2022
  • Conventional wastewater treatment plants (WWTPs) do not fully remove micropollutants. Enhanced treatment of sewage effluents is being considered or implemented in some countries to minimize the discharge of problematic micropollutants from WWTPs. Representative enhanced sewage treatment technologies for micropollutant removal were reviewed, including their current status of research and development. Advanced oxidation processes (AOPs) such as ozonation and UV/H2O2 and adsorption processes using powdered (PAC) and granular activated carbon (GAC) were mainly discussed with focusing on process principles for the micropollutant removal, effect of process operation and water matrix factors, and technical and economic feasibility. Pilot- and full-scale studies have shown that ozonation, PAC, and GAC can achieve significant elimination of various micropollutants at economically feasible costs(0.16-0.29 €/m3). Considering the current status of domestic WWTPs, ozonation and PAC were found to be the most feasible options for the enhanced sewage effluent treatment. Although ozonation and PAC are all mature technologies, a range of technical aspects should be considered for their successful application, such as energy consumption, CO2 emission, byproduct or waste generation, and ease of system construction/operation/maintenance. More feasibility studies considering domestic wastewater characteristics and WWTP conditions are required to apply ozonation or PAC/GAC adsorption process to enhance sewage effluent treatment in Korea.

상수원수 내 이취미 제거효율 향상을 위한 분말활성탄 투입지점의 평가 (Evaluation on the Locations of Powdered Activated Carbon Addition for Improvement of Taste and Odor Removal in Drinking Water Supplies)

  • 김영일;이상진;배병욱
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.341-348
    • /
    • 2007
  • The efficiency of powdered activated carbon (PAC) for removing taste and odor (T&O) in drinking water supplies is dependent on the contact time, quality of mixing, and the presence of competing compounds. All of these are strongly influenced by the stage in the treatment process at which the PAC is added. In conventional water treatment plants (WTPs), PAC is commonly added into the rapid mixing basin where chemicals such as coagulants, alkaline chemicals, and chlorine, are simultaneously applied. In order to prevent interference between PAC and other water treatment chemicals, alternative locations for addition of PAC, such as at transmission pipe in the water intake tower or into a separated PAC contactor, were investigated. Whatever the location, addition of PAC apart from other water treatment chemicals was more effective for geosmin removal than simultaneous addition. Among several combinations, the sequence 'chlorine-PAC-coagulant' produced the best result with respect to geosmin removal efficiency. Consequently, when PAC has to be applied to cope with T&O problems in conventional WTPs, it is very important to prevent interference with other water treatment chemicals, such as chlorine and coagulant. Adequate contact time should also be given for adsorption of the T&O compounds onto the PAC. To satisfy these conditions, installation of a separated PAC contactor would be the superior alternative if there is space available in the WTP. If necessary, PAC could be added at transmission pipe in the water intake tower and still provide some benefit for T&O treatment.

셰일가스 플랜트 용수 처리를 위한 직접 접촉 막 증발법 적용 가능성 연구 (A Feasibility Study on Shale Gas Plant Water Treatment by Direct Contact Membrane Distillation)

  • 구재욱;한지희;이상호;홍승관
    • 한국유체기계학회 논문집
    • /
    • 제16권1호
    • /
    • pp.56-60
    • /
    • 2013
  • Non-conventional oil resources such as shale gas are becoming increasingly important and have drawn the attention of several major oil companies all over the world. Nevertheless, the market-changing growth of shale gas production in recent years has resulted in the emergence of environmental and water management challenges. This is because the water used in the hydraulic fracturing process contains large amount of pollutants including ions, organics, and particles. Accordingly, the treatment of this flowback water from shale gas plant is regarded as one of the key technologies. In this study, we examined the feasibility of membrane distillation as a treatment technology for the water from shale gas plants. Direct contact membrane distillation (DCMD) is a thermally-driven process based on a vaper pressure gradient across a hydrophobic membrane, allowing the treatment of feed waters containing high concentration of ions. Experiments were carried out put in the lab-scale under various conditions such as membrane types, temperature difference, flow rate and so on. Synthetic feed water was prepared and used based on the data from literature. The results indicated that DCMD is suitable for treating not only low-range flowback water but also high-range flowback water. Based on the theoretical calculation, DCMD could have over 80% of recovery. Nevertheless, organic pollutants such as oil and surfactant were identified as serious barriers for the application of MD. Further works will be required to develop the optimum pretreatment for this MD process.

Advances in electrodeionization technology for ionic separation - A review

  • Khoiruddin, Khoiruddin;Hakim, A.N.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • 제5권2호
    • /
    • pp.87-108
    • /
    • 2014
  • Electrodeionization (EDI), which combines electrodialysis (ED) and conventional ion-exchange (IX), is a mature process which has been applied since more than twenty years on commercial use for the production of ultrapure water (UPW). Eliminating chemical regeneration is the main reason for its commercial success. The increase in acceptance of EDI technology has led to an installation of very large plant as the commercial state of the art that produces $1,500m^3/h$ of water for high pressure steam boiler. More recently, EDI system has found a number of new interesting applications in wastewater treatment, biotechnology industry, and other potential field. Along with further growth and wider applications, the development of stack construction and configuration are also become a concern. In this paper, the principle of EDI process is described and its recent developments, commercial scale, and various applications are pointed out.

RO 농축수내 고농도 염분이 생물학적 폐수처리공정내 미생물 순응/배양에 미치는 영향평가 (Evaluation of the Effect of High Salinity RO Concentrate on the Microbial Acclimation/Cultivation Characteristics in Biological Wastewater Treatment Process)

  • 김연권;강석형
    • 환경영향평가
    • /
    • 제21권5호
    • /
    • pp.707-713
    • /
    • 2012
  • There are a lot of parameters affecting microbial acclimation/cultivation characteristics such as dynamic conditions, F/M ratio and substrate affinity. From the process control point of view, the effect of high salinity on the removal efficiencies of BOD and SS have been documented by few researchers. In this research, lab-scale CAS(Conventional Activated Sludge) process and modified $A_2O$(Anaerobic/Anoxic/Oxic) process were operated and monitored to evaluate the characteristics of microbial acclimation and cultivation under high salinity wastewater during the period of three weeks. As a result of acute microbial activity test(6hr) at various $Cl^-$ concentration, the appropriate $Cl^-$ concentration for microbial growth and acclimation ranged under 3,100 mg/l. As a result of acclimation/cultivation test, the trend of COD removal efficiency reduced gradually as time elapsed. It is considered that $NH_4$-N removal phenomenon of the conventional pollutants removal mechanisms gave little effect to the microbial acclimation/cultivation under high salinity wastewater.

DTP(Digital Textile Printing)용 후처리 및 연속공정 시스템에 관한 연구 (Research on Continuous After-Treatment Process and System for DTP(Digital Textile Printing))

  • 박순영;전동원;박윤철;이범수;조항성
    • 패션비즈니스
    • /
    • 제15권5호
    • /
    • pp.43-54
    • /
    • 2011
  • Digital Textile Printing(DTP) is appropriate for quick response system(QRS) and is closely connected with high value added fashion industry. Fashion products of high price are mainly silk and cotton. For high quality DTP products, it is important to optimize the parameters of media, pre and after-treatment, ink, printer, etc. DTP for these two fiber materials is also accompanied certainly with steaming as after-treatment process for coloration. Role of steam is like water in exhaustion dyeing. Steam can diffuse dye or ink in printing paste to fiber. Quality of DTP products depend on after-treatment processes such as steaming, washing, drying. Current production amount of DTP is smaller than one of conventional textile printing. However conventional after-treatment system has been using so far. This is mismatched with DTP in terms of process efficiency, spot work of small lot, quality control. In this study, continuous after-treatment system has been suitably designed for DTP that washing and drying are available after steaming. So, It is possible to improve efficiency of DTP process. Especially, the effects of after-treatment process, such as temperature of heat drum, steaming time on printability, color difference, color fastness were examined. Two types of samples(cotton knit and silk fabrics) were used. The results were obtained as follows : First, there is no a wide difference between the K/S values of cotton and silk treated with continuous after-treatment system and those of sample treated with conventional printing after-treatment method. So it is more effective to use the continuous after-treatment system than conventional printing after-treatment system in case of the daily throughput of 1,000 yards below. Second, after continuous after-treatment for DTP, K/S values were increased and lightness($L^*$) values were decreased. ${\Delta}E$ values were below 2.3. Third, DTP samples treated with continuous after-treatment system were tested for fastness(washing, light, rubbing). Grades of fastness(washing, light, rubbing) were above 3 grade.

Towards a novel approach to improve drinking water quality at Dhaka, Bangladesh

  • Serajuddin, Md.;Chowdhury, Md. Aktarul Islam
    • Environmental Engineering Research
    • /
    • 제23권2호
    • /
    • pp.136-142
    • /
    • 2018
  • The river water source of Saidabad Surface Water Treatment Plant at Dhaka, Bangladesh, is deteriorated too much to be treated by conventional treatment process due to excessive ammonia pollution. In order to improve the raw water quality before it enters into the main treatment chain, a pilot study was conducted for pre-treatment of the raw water. The objective is to investigate the rate of reduction of ammonia using the Meteor pilot, a biological pretreatment system, which is a laboratory scale Moving Bed Biofilm Reactor with a nominal volume of hundred liters, filled with 50 L of Meteor 660 media. The reduction of ammonia was quite significant on average 73%, while the reduction of COD was in a range from 20 to 60%. The Meteor pilot was able to treat and nitrify the raw water and produce an effluent that respects the guarantee of ammonia < $4.0mg\;NH_3-N/L$ when the raw water ammonia concentration was < $15mg\;NH_3-N/L$. The study identified operating parameters necessary to achieve the desired goal of adequate ammonia removal. The study results would benefit a range of systems across the country by providing guidance on the design and operation of a biological pre-treatment system for ammonia removal.

순산소 활성오니 공정을 이용한 제지폐수의 처리특성 (Treatment Characteristics of Paper-mill Wastewater Using Pure Oxygen Activated Sludge Process)

  • 김성순;정태학
    • 상하수도학회지
    • /
    • 제13권4호
    • /
    • pp.27-34
    • /
    • 1999
  • An experimental study on improvement of the paper-mill wastewater treatment using the pure oxygen activated sludge process was conducted. The effects of hydraulic retention time(HRT) and BOD loading on organic removal efficiency were investigated. The BOD removal efficiencies were above 90% under all examined HRTs except for HRT of 3 hours. The increase of HRT from 3 hours to 6 hours, and to 12 hours significantly improved BOD and COD removal efficiencies, respectively. However, additional increase of HRT did not affect organic removal efficiency. F/M ratio change at fixed HRT did not affect organic removal efficiency. However, F/M ratio investigated in this study(0.11~1.98kgBOD/kgMLVSS/day) was 5 times greater in maximum than that of conventional activated sludge process, which implies that pure oxygen activated sludge process can treat wastewater with high organic strength. Under the same HRT, the volumetric BOD loading change cause no effect on organic removal efficiency also.

  • PDF

Pulse UV 장치를 이용한 원유비축시설 발생폐수의 난분해성 유기오염물질 제거 (Removal of Non-biodegradable Organic Contaminants in Wastewater from crude oil reserve base Using Pulse UV System)

  • 손진식;박순호;정의택
    • 상하수도학회지
    • /
    • 제25권6호
    • /
    • pp.861-867
    • /
    • 2011
  • Wastewater from crude oil reserve base usually contains large amount of non-biodegradable contaminants. The conventional wastewater treatment progress can hardly meet the regulation of wastewater effluent quality. This study investigated the removal of non-biodegradable organic contaminants in wastewater from crude oil reserve base using a pulse UV treatment. The modified process incorporating pulse UV process was set up to treat the wastewater from crude oil reserve base. The treatment process is composed with coagulation and flocculation, micro-bubble flotation, sand filter, pulse UV system, and GAC filter. The results show CODMn was effectively removed by the process with pulse UV system and it can meet the wastewater effluent regulation. The single effect of pulse UV process in CODMn removal was not significant(9~15% based on sand filtered effluent), however with the subsequent activated carbon filter the removal ratio CODMn was increased up to 28% compared to the process without pulse UV syetem.