• Title/Summary/Keyword: Conventional coil

Search Result 290, Processing Time 0.038 seconds

Design of the High Efficiency Wireless On-Board Charger for Electric Vehicles (전기자동차용 고효율 무선 온보드 충전기의 설계)

  • Tran, Duc-Hung;Vu, Van-Binh;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.27-28
    • /
    • 2015
  • In this paper a high efficiency wireless on-board charger for Electric Vehicle (EV) is proposed and the theoretical analysis based on the two-port network model to come up with suitable design for the battery charge application is presented. The proposed Wireless Power Transfer (WPT) method has adopted four-coil system with air core and its superior performance is proved by comparing it to the conventional two-coil system by the mathematical analysis. In addition, since the proposed WPT converter is able to operate at an almost constant frequency regardless of the load, CC/CV charge of the battery can be simply implemented. A 6.6kW prototype is implemented with 20cm air gap to prove the validity of the proposed method. The experimental results show that the dc to dc conversion efficiency of the proposed system achieves 97.08% at 3.7 kW.

  • PDF

Development of a Temperature Control Model for a Hot Coil Strip using on-line Retrainable RBF Network (온라인 재학습 가능한 RBF 네트워크를 이용한 열연 권취 온도 제어 모델 개발)

  • Jeong, So-Young;Lee, Min-Ho;Lee, Soo-Young
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.39-47
    • /
    • 1999
  • This paper describes on-line retrainable RBF network in order to control the coiling temperature for a hot coil strip at Pohang Iron & Steel Company(POSCO). The proposed neural network can be used for improving conventional rule-based lookup table, which generates a heat transmission coefficient. To cope with time-varying characteristics of hot coil process, additional synaptic weights for on-line retraining purposes are introduced to hidden-to-output weights of conventional RBF network. Those weights are locally adjusted to newly incoming test data while preserving old information trained with off-line past data. Hence the effect of catastrophic interference can be greatly alleviated with the proposed network. In addition, rejection scheme is introduced for reliability concerns. From the experimental results applied to the actual process, it is noticed that overall control performance represents about 2.2% increase compared to the conventional one.

  • PDF

Magnetic Field Dependent Characteristics of Al-doped ZnO by High Power Impulse Magnetron Sputtering (HIPIMS) (자장 구조 변화에 따른 High Power Impulse Magnetron Sputtering (HIPIMS)에서 Al-doped ZnO 박막 증착 특성)

  • Park, Dong-Hee;Yang, Jeong-Do;Choi, Ji-Won;Son, Young-Jin;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.629-635
    • /
    • 2010
  • Abstract In this study characteristics of Al-doped ZnO thin film by HIPIMS (High power impulse sputtering) are discussed. Deposition speed of HIPIMS with conventional balanced magnetic field is measured at about 3 nm/min, which is 30% of that of conventional RF sputtering process with the same working pressure. To generate additional magnetic flux and increase sputtering speed, electromagnetic coil is mounted at the back side of target. Under unbalanced magnetic flux from electromagnet with 1.5A coil current, deposition speed of AZO thin film is increased from 3 nm/min to 4.4 nm/min. This new value originates from the decline of particles near target surface due to the local magnetic flux going toward substrate from electromagnet. AZO film sputtered by HIPIMS process shows very smooth and dense film surface for which surface roughness is measured from 0.4 nm to 1 nm. There are no voids or defects in morphology of AZO films with varying of magnetic field. When coil current is increased from 0A to 1A, transmittance of AZO thin film decreases from 80% to 77%. Specific resistance is measured at about $2.9{\times}10-2\Omega{\cdot}cm$. AZO film shows C-axis oriented structure and its grain size is calculated at about 5.3 nm, which is lower than grain size in conventional sputtering.

Assessment of Diffusion-Weighted Imaging-FLAIR Mismatch: Comparison between Conventional FLAIR versus Shorter-Repetition-Time FLAIR at 3T

  • Goh, Byeong Ho;Kim, Eung Yeop
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.2
    • /
    • pp.88-94
    • /
    • 2016
  • Purpose: Fluid-attenuated inversion recovery (FLAIR) imaging can be obtained faster with shorter repletion time (TR), but it gets noisier. We hypothesized that shorter-TR FLAIR obtained at 3 tesla (3T) with a 32-channel coil may be comparable to conventional FLAIR. The aim of this study was to compare the diagnostic value between conventional FLAIR (TR = 9000 ms, FLAIR9000) and shorter-TR FLAIR (TR = 6000 ms, FLAIR6000) at 3T in terms of diffusion-weighted imaging-FLAIR mismatch. Materials and Methods: We recruited 184 patients with acute ischemic stroke (28 patients < 4.5 hours) who had undergone 5-mm diffusion-weighted imaging (DWI) and two successive 5-mm FLAIR images (no gap; in-plane resolution, $0.9{\times}0.9mm$) at 3T with a 32-channel coil. The acquisition times for FLAIR9000 and FLAIR6000 were 108 seconds (generalized autocalibrating partially parallel acquisitions [GRAPPA] = 2) and 60 seconds (GRAPPA = 3), respectively. Two radiologists independently assessed the paired imaging sets (DWI-FLAIR9000 and DWI-FLAIR6000) for the presence of matched hyperintense lesions on each FLAIR imaging. The signal intensity ratios (area of DWI lesion to contralateral normal-appearing region) on both FLAIR imaging sets were compared. Results: DWI-FLAIR9000 mismatch was present in 39 of 184 (21.2%) patients, which was perfectly the same on FLAIR6000. Three of 145 patients (2%) with DWI-matched lesions on FLAIR9000 had discrepancy on FLAIR6000, showing no significant difference (P > 0.05). Interobserver agreement was excellent for both DWI-FLAIR9000 and DWI-FLAIR6000 (k = 0.904 and 0.883, respectively). Between the two FLAIR imaging sets, there was no significant difference of signal intensity ratio (mean, standard deviation; $1.25{\pm}0.20$; $1.24{\pm}0.20$, respectively) (P > 0.05). Conclusion: For the determination of mismatch or match between DWI and FLAIR imaging, there is no significant difference between FLAIR9000 and FLAIR6000 at 3T with a 32-channel coil.

Development of Solenoid RF Coil for Animal Imaging in 3T High Magnetic Field MRI (고자장 3T MRI 장비에서 동물영상을 위한 솔레노이드 RF코일 개발)

  • Lee, Hong-Seok;Woo, Dong-Cheol;Min, Kwang-Hong;Kim, Yong-Kwon;Lee, Heung-Kyu;Choe, Bo-Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.20-26
    • /
    • 2007
  • Purpose : The purpose of the present study was to develop and optimize solenoid coil for animal- model in 3 T MRI system and investigate and compare with the birdcage coil concerning the image quality with the various parameters such as SNR and Q-factor. Materials and Methods : Solenoid coil for animal-model was made on the acryl structure (diameter 4 cm, length 10 cm) 3 times-winding cooper tape of width 2 cm, thickness 0.05 cm and length 10 cm with 2 cm interval between winded tapes. Capacitors from 2 pF to 100 pF were used, and the solenoid coil was designed for receiver only coil. Results : SNR of the developed solenoid was 985 in CuSO4 0.7 g/L and 995 in rat experiment. Q-factor was 84-89 in unloaded condition and 203-206 in loaded condition. Conclusion : The resolution of the image obtained from solenoid was relatively higher than that of the conventional birdcage coil. In addition, the homogeneity of RF field by coil simulation was significantly excellent. The present study demonstrated that the solenoid coil could be useful to obtain small animal images with better contrast, resolution, visibility than images from birdcage.

  • PDF

Cell Balancing Method in Flyback Converter without Cell Selection Switch of Multi-Winding Transformer

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.367-376
    • /
    • 2016
  • This paper presents a cell balancing method for a single switch flyback converter with a multi-winding transformer. The conventional method using a flyback converter with a multi-winding transformer is simple and easy to control, but the voltage of each secondary winding coil might be non-uniform because of the unequal effective turn-ratio. In particular, it is difficult to control the non-uniform effect using turn-ratios because secondary coil has a limited number of turns. The non-uniform secondary voltages disturb the cell balancing procedure and induce an unbalance in cell voltages. Individual cell control by adding a switch for each cell can reduce the undesirable effect. However, the circuit becomes bulky, resulting in additional loss. The proposed method here uses the conventional flyback converter with an adjustment made to the output filters of the cells, instead of the additional switch. The magnitude of voltage applied to a particular cell can be reduced or increased according to the adjusted filter and the selected switching frequency. An analysis of the conventional converter configuration and the filter design method reveals the possibility of adequate cell balancing control without any additional switch on the secondary side.

Design Considerations of 2-pole Synchronous Superconducting Rotating Machine (2극 초전도 동기기 설계법 고찰)

  • Baik, S.K.;Sohn, M.H.;Lee, E.Y.;Kwon, Y.K.;Ryu, K.S.;Jo, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.865-867
    • /
    • 2001
  • Generally large synchronous rotating machines with 2 poles have more merits than the others with more than 2 poles Superconducting synchronous rotating machines also have the same tendency, but they have different structure from conventional ones because of no magnetic core inside of the rotor. As the result, design approaches of the superconducting field coils are also different, which would be classified into 2 types according to their coil shapes. The first one is race-track type and the other is saddle type Race-track type machines have almost the same structure with conventional salient pole generators which are being used as largely small scale machines with more than 2 poles. On the other hand saddle type machines correspond to conventional cylindrical generators with 2 poles used for large turbine system in power plants. In this paper several types of superconducting field coils are introduced for 2 pole superconducting machine design and then the feasibility of each type is considered. Moreover, based on the consideration. 1MVA superconducting generator(S.G.) with saddle type field coil is designed electromagnetically.

  • PDF

Experimental Study on Position Control System Using Encoderless Magnetic Motion (엔코더리스 마그넷 모션을 이용한 위치제어에 대한 리니어모터 실험적 연구)

  • Kim, Hong-youn;Yun, Young-Min;Shim, Ho-Keun;Kwon, Young-Mok;Heo, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • A position control system composed of the PMLSM(Permanent Magnet Linear Synchronous Motor), unlike conventional linear permanent magnet synchronous motor is fixed to the permanent magnet moving coil rails (permanent magnet = stator, coil = mover), the coil is fixed, moving the permanent magnet, we propose a position control system (permanent magnet = mover, coil = stator) structure. Position is measured not using conventional encoder or resolver but by adopting vector control method using 2 hall sensors generating rectangular signal. This method estimate the velocity and position of mover by using the quadruple of two hall sensor signal instead of encoder signal. Vector control of PMLSM using 2 hall sensor generating rectangular wave is proved to control the system stable and efficiently through simulation. Also hardware experiment reveals that the position control performance is measured within the range of $30{\sim}50{\mu}m$ in the accuracy of $10{\sim}20{\mu}m$, which is improved twice to the conventional method. The proposed method exhibits its economical efficiency and practical usefulness. The vector control technique using two hall sensors can be installed in narrow place, accordingly it can be implemented on the system where the conventional encoder or resolver cannot operate.

Design and Sensitivity Analysis of Design Factors for Induction Heating System (수치해석을 통한 유도가열 코일의 설계 및 설계인자의 민감도 해석)

  • Oh, Dong-Wook;Kim, Tae Hoon;Do, Kyu Hyung;Park, Jang Min;Lee, Jungho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.233-240
    • /
    • 2013
  • Rapid and homogeneous heating in heat treatment has been a challenging engineering issue throughout a heating temperature over $1,000^{\circ}C$. Induction heating has been widely used in field of heat treatment compared with conventional heating system. Advantages in homogeneous heating, simple fabrication, and repeatable use can be efficiently made with the induction heater. In this paper, numerical analysis of an induction coil system for heat flux gauge heating is performed. The effect of configuration on the heating performance was considered in various cases of the coil radius, distance between the winding, relative height difference between the heat flux gauge and the coil, and the applied current frequency. Temperature distribution within the heat flux gauge at frequency-steady state was calculated with a finite element method. Sensitivity analysis was also performed and the relative importance of 2 key parameters; coil radius, distance between the winding, were taken as main contributors for induction heating.

Fabrications and measurements of single layer YBCO dc-SQUID magnetometers designed with parallel-loop pickup coil (Parallel-loop 검출코일을 가지는 단일층 YBCO dc-SQUID 자력계의 제작 및 특성 연구)

  • 유권규;김인선;박용기
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • We have designed and fabricated the single-layer high $T_{c}$ SQUID magnetometer consisting of a directly coupled grain boundary junction SQUID with an inductance of 100 pH and 16 nested parallel pickup coils with the outermost dimension of 8.8 mm ${\times}$ 8.8 mm. The magnetometer was formed from a YBCO thin film deposited on an STO(100) bicrystal substrate with a misorientation angle of $30^{\circ}$. The SQUID magnetometer was further improved by optimizing the multi-loop pickup coil design for use in unshielded environments. Typical characteristics of the dc SQUID magnetometer had a modulation voltage of 40 $\mu\textrm{V}$ and a white noise of $30fT/Hz^{1}$2/. The SQUID magnetometer exhibited a 1/f noise level at 10 Hz reduced by a factor of about 3 compared with that of the conventional solid type pickup coil magnetometers and a very stable flux locked loop operation in magnetically disturbed environments.s.

  • PDF