• Title/Summary/Keyword: Conventional Tillage

Search Result 87, Processing Time 0.02 seconds

Effect of No-Tillage on Soybean Yield and Weed Emergence in Drained Paddy Field Condition in Jeonnam Province (전남지역 논 조건에서 무경운 재배가 콩의 생육, 수량 및 잡초 발생에 미치는 영향)

  • Kim Dong-Kwan;Chon Sang-Uk;Heo Buk-Gu
    • The Korean Journal of Community Living Science
    • /
    • v.17 no.3
    • /
    • pp.89-97
    • /
    • 2006
  • This study was conducted to compare soybean growth and yield and the degree of weed emergence according to no-tillage and conventional tillage system in two different drained paddy fields, loam of Chilgok series and silty clay loam of Deokpyeong series. In both soil conditions, the maturing time of the soybeans by the no-tillage system was two days earlier than that by the conventional tillage system. In the loam of Chilgok series, the stem length of the soybeans in the no-tillage system was 5.7 cm longer than that in the conventional tillage system. The miss-planted rate and diseased plants of black root rot (Calonectria iliacola) in the no-tillage system were 9.2% and 2.8% lower, respectively than those in the conventional tillage system. Also, the nodulation and seed yield in the no-tillage system were 32% and 13% more, respectively, than those in the conventional tillage system. In the silty clay loam of Deokpyeong series, the stem length of the soybeans in the no-tillage system was 4.6cm shorter than in the conventional tillage system. The diseased plants of black root rot (Calonectria iliacola) in the no-tillage system were 4.2% lower than those in the conventional tillage system. Also, no significant difference in the seed yield between the no-tillage and conventional tillage systems was observed. On the other hand, there was a lower occurrence of weed in the no-tillage system than in the conventional tillage system, and the income increased by 19% owing to yield increase and reduced management costs.

  • PDF

Response of Yields and Major Characters of Waxy Corn Hybrids under No-Tillage Practice (무경운 재배에서 찰옥수수 교잡종의 수량 및 주요형질의 반응)

  • 이명훈
    • Korean Journal of Organic Agriculture
    • /
    • v.11 no.1
    • /
    • pp.79-88
    • /
    • 2003
  • Saved labor cost, energy conservation, reduced soil erosion, and increase of emergence rate would be expected from no-tillage cultivation of corn. Few research has been reported on the no-tillage effects for waxy corn hybrid. Five waxy com hybrids were tested under conventional and no-tillage practices to investigate responses of early growth, plant characters, ear characters, fresh yield, and grain yield. Emergence rates under no-tillage were lower than under conventional tillage. Plant heights at early growth stages under no-tillage were higher than those under conventional tillage. Plant height under no-tillage was higher than that under conventional tillage. There were no differences between conventional tillage and no-tillage for ear length, number of kernel rows, number of kernels per row, 100 kernels weight, fresh yield, and grain yield. This result indicates that no-tillage practice might be recommended for practical method for waxy com production. Days to tasseling and silking, plant height, ear height, ear length, and number of kernels per row were correlated with fresh and grain yields.

  • PDF

Tillage Characteristics of the Single-Edged Rotary Blade (단면형 로터리경운날의 경운 특성)

  • 이승규;김성태;우종구
    • Journal of Biosystems Engineering
    • /
    • v.25 no.5
    • /
    • pp.369-378
    • /
    • 2000
  • The purpose of this study is to developed high-efficient rotary tillage system for a power tiller by improving the rotary blade. A kind of the rotary blade with single-edged blade(DS) was developed that requires lower tillage energy than conventional double-edged blade(CD) on the design theory for Japanese rotary blade. In order to find out the tillage characteristics between the single-edged blade and the double-edged blade for power tiller, experiments were performed in soil-bins which were filled up clay loam, loam and sandy loam, and then analyzed the effects of the factors such as soil texture, travelling speed, rotational speed, and tillage depth to each of the blades. And field tests were carried out to compare tillage performances of the two blades using rotary cultivator driven by conventional power tiller. The results of this study were summarized as follows; 1) On the soil bin experiment, it was found that tillage torque of the single-edged blade was less than the ones of the double-edged blade. The decreasing ratios of maximum tillage torque of the single-edged blade to the ones of the double-edged blade were 1 to 8% at clay loam, 5 to 20% at loam and 9 to 31% at sandy loam, respectively. 2) By the field tests, that the tillage performances with the single-edged blade compared with the double-edged blade was improved about 19% in field capacity, about 34% in fuel consumption, and 12.5% in soil breaking ratio. Furthermore, the fluctuation of engine speed, the variation of exhaust gas temperature, and the amount of soil clogging on the blade and straw wound on the rotary shaft showed lower values with the developed blade than the conventional blade. So, it may be concluded that tillage performance by the developed single-edged blade was improved compared with the one by the conventional double-edged blade.

  • PDF

Tillage practices and fertilization effects on growth and nitrogen efficiency in soybean

  • Roy, Swapan Kumar;Jung, Hyun-Jin;Yoo, Jang-Hwan;Kwon, Soo Jeong;Yang, Jong-Ho;Kim, Sook-Jin;Chung, Keun-Yook;Kim, Hong-Sig;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.356-356
    • /
    • 2017
  • A field experiment was performed to evaluate the effects of tillage systems and fertilizer management on yield and nutrient uptake in Soybean. The plant height, fresh weight and dry weight of conventional tillage were much higher those observed for no-tillage. Significant differences in plant height were observed under tillage practices combined with fertilizer treatment. However, the greatest plant height (128.47 cm) was observed in conventional tillage with chemical fertilizer, and the lowest (45.4 cm) was observed in the no-tillage with green manure treatment. The highest fresh weight (172.4 g) and dry weight (44.1 g) were observed from the no-tillage chemical treatment in the late flowering stage of soybean. The plant concentration of nitrate was higher (2.29%) in no-tillage with green manure than it was with chemical fertilization. However, nitrogen increased steadily in all treatments, and the highest quantity of total nitrogen (476.7 Kg/ha) was observed in no-tillage with green manure. The N content in the soil decreased gradually just after the vegetative stage. Tillage practices and additional fertilizer application had an adverse effect on the uptake of N, P and K in soybean seeds. The nitrogen concentration in seeds was found to be increased in the no-tillage with green manure treatment. The uptake of more nitrogen induced a better yield. Thus, the no-tillage with green manure treatment had the greatest yield, although no significant difference was observed among foliar-applications and additional fertilization. Additionally, the phosphorus and potassium concentrations in seeds remained the same between the conventional tillage and no-tillage treatments. The results obtained in this study indicate that no-tillage strategies with fertilizers may influence the growth characteristics and mineral uptake in soybean.

  • PDF

Development of Dry Paddy Seeder of Strip Tillage (부분경운 건답직파기 개발)

  • 박석호;이동현;김학진;이채식;곽태용;조성찬
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • This study was conducted to develop a dry paddy seeder of strip tillage. The prototype is 8 rows drill seeder, which is composed of a strip tillage, sowing and fertilizing device, and pressing wheels to do the strip tillage, sowing, fertilizing, and draining ditch, simultaneously. The performances of prototype was evaluated through the investigation of fuel consumption, tillage torque, ratio of soil breaking, and economical efficiency and the results were compared with these of a dry paddy seeder that needs whole tillage. According to the USDA textural classification, the experiment field was composed of sandy loam which consisted of 56.8 of sand, 30.2 of silt and 13.0 % of clay, respectively. Its hardness ranged from 952 to 1,673 kPa depending on the soil depth, and its soil moisture content was 24.9%(d. b.) Fuel consumption of the prototype was 5,015g/hr at 2,000 rpm of engine, which was consequently 64% smaller than that of the conventional dry paddy seeder. For the tillage torque, it ranged from 132 to 206N$.$m depending on the tillage pitch, which was 10∼30% smaller than that of the conventional dry paddy seeder. The ratio of soil braking of the prototype was 87∼98%, whereas that of the conventional dry paddy seeder was 80∼97%. The working performance of the prototype was surveyed to be 3.8hours/ha, which was about 5 times higher than that of the conventional dry paddy seeder. The cost reduction of 26.3% was obtained by using the prototype.

Effects of No-tillage Dry-seeding on Rice Growth and Soil Hardness

  • Choi, Jong-Seo;Kim, Sook-Jin;Park, Jeong Hwa;Kang, Shingu;Park, Ki-Do;Yang, Woonho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.662-668
    • /
    • 2016
  • No-tillage dry-seeding of rice can offer potential benefits by reducing time and labor cost compared with conventional tillage practices. This study was conducted to investigate the effects of no-tillage dry-seeding on rice growth and soil hardness in comparison with other rice cultivation methods, machine transplanting and wet-hill-seeding on puddled paddy. The seedling stand fell within optimum range for both no-till dry-seeding and wet-hill-seeding on puddled paddy. Plant height, number of tillers and SPAD values in no-tillage dry-seeding cultivation were higher than those observed in other methods. There were no significant differences in grain yield of rice among three cultivation methods. The quality characteristics of milled rice grown in no-tillage dry-seeding were similar to those grown in other cultivation methods. Soil hardness in top 10 cm depth was significantly higher in no-tillage dry-seeding than other cultivation methods, while soil hardness below 10 cm depth was highest in machine transplanting cultivation. Results indicate that no-tillage dry-seeding practice is comparable to conventional tillage system in terms of seedling establishment, growth, yield and grain quality.

Comparative analysis of growth, yields and grain quality of rice among no-tillage dry-seeding, wet-hill-seeding and transplanting

  • Choi, Jong-Seo;Kim, Sook-Jin;Kang, Shingu;Park, Jeong Hwa;Yoon, Young-Hwan;Yang, Woonho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.208-208
    • /
    • 2017
  • No-tillage practices are expected to provide several benefits such as increasing soil organic matter, reducing labor time and saving energy cost compared with conventional tillage practices. This study was conducted to investigate the effects of no-tillage dry-seeding on rice growth and soil properties in comparison with other rice cultivation methods, machine transplanting and wet-hill-seeding on puddled paddy. Rice seedling establishment was slightly higher in no-tillage dry-seeding treatment ($145seedling\;m^{-2}$) than wet-hill-seeding on puddled paddy treatment ($111seedling\;m^{-2}$), but the seedling establishment in both treatments fell within the optimum range for direct seeding rice cultivation. Plant height, number of tillers and chlorophyll content (SPAD value) of rice in no-tillage dry-seeding treatment were higher than those of the other treatments. However, no significant differences in grain yield was observed among three cultivation methods, and the yield ranged 5.8 to $5.9ton\;ha^{-1}$. The heading date from seeding under no-tillage dry-seeding treatment was on average 109 days, which was similar to that under machine transplanting treatment (112 days), but 10 days later than that under wet-hill-seeding on puddled paddy treatment (99 days). Grain quality characteristics grown in no-tillage dry-seeding were similar to those grown in the other cultivation methods. These results indicate that no-tillage dry-seeding practice is comparable to conventional tillage system in terms of seedling establishment, growth, yields and grain quality.

  • PDF

Effect of Tillage System on the Forage Production and Soil Characteristics of Silage Corn (경운방법이 사일리지용 옥수수의 사초생산성 및 토양특성에 미치는 영향)

  • Kim, Jong-Duk;Kwon, Chan-Ho;Gu, Yang-Hae;Shin, Mung-Su
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.4
    • /
    • pp.307-314
    • /
    • 2008
  • No comprehensive tillage system of corn (Zea mays L.) has been conducted in Korea. Therefore, this experiment was carried to determine soil characteristics, weed and forage production in tillage system of corn. Plot was allotted to one of four treatments in a randomized block design using tillage system. The four treatments were (T1) conventional tillage, plow and rotary till, (T2) rotary till, (T3) disk till, and (T4) no-till system. In soil characteristics before planting and after harvest of corn, pH and organic matter at planting date was higher than at harvest date, however, there were no difference among tillage system. Days from planting to silking of no-till was the longest among tillage system. Lodging resistance of disk and no-till were higher than conventional and rotary till due to its thicken stem diameter. Main weed in corn field are barnyard grass (Echinochloa crusgall), velvetleaf(Abutilon avicennae), crabgrass (Digitatia saguinalis), and redroot pigweed (Amaranthus retroflexus). Weed population was lower in no-till than others tillage system. Dry matter (DM) content and ear percentage of conventional and rotary till were higher than others in corn field. However, DM and total digestible nutrients (TDN) yields of disk and no-till were higher than those of conventional and rotary till. Therefore, disk and no-till are more suitable in corn silage system because of high lodging resistance and forage yield, and low weed population.

Evaluation of Soil Loss According to Surface Covering and Tillage Methods in Corn Cultivation

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Kim, Jeom-Soon;Han, Kyung-Hwa;Park, Seok-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.510-518
    • /
    • 2013
  • Corn was mainly cultivated in slope land during summer season when heavy rain falls so that soil loss occurs severely. Especially, soil disturbance and exposure of topsoil by conventional tillage intensifies soil loss by heavy rain. The aim of this study was to develop surface covering and tillage methods for reducing soil loss in corn cultivation. The experiment was conducted in 17% sloped lysimeter with 8 treatments including strip tillage after surface covering with rye residue, strip tillage after residue covering of several crops and sod culture, black polyethylene film covering after conventional tillage and control. Amount of runoff water and eroded soil, and corn growth were investigated. Amounts of runoff water in all plots except black polyethylene plot ranged from 152 to 375 $m^3\;ha^{-1}$, accounting for 13~32% of 1,158 $m^3\;ha^{-1}$ in control. Amount of eroded soil decreased by 94 to 99% (3 to 89 kg $ha^{-1}$) in plots of strip tillage after covering with crop residues compared to control with 1,739 kg $ha^{-1}$. Corn yields in plots of strip tillage after covering with crop residues ranged from 6.0 to 6.9 Mg $ha^{-1}$, while that of control was 6.5 Mg $ha^{-1}$. The results suggest that strip tillage methods after surface covering with crop residues are very effective on soil conservation of slope land in corn cultivation.

Effects of Deep Tillage before Planting on Physicochemical Properties of Soil, Growth and Fruit Characteristics in Cultivation of Watermelon under Plastic Film House (수박 시설 재배에서 정식 전 심경로타리 처리가 토양 이화학성, 생육 및 과실 특성에 미쳐는 영향)

  • Eun, Jong-Seon;Han, Suk-Kyo;Kang, Nam-Hee;Kim, Ho-Cheol;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.19 no.3
    • /
    • pp.130-134
    • /
    • 2010
  • To investigate effects of deep tillage before planting on physicochemical properties of soil, growth and fruit characteristics in cultivation of watermelon (Citrullus vulgaris L. cv. 'Uriggul') under plastic film house, this study was conducted in cultivating field of Gochang Junbuk. pH in soil after harvest compared with soil before planting of watermelon had almost no change, but EC lowed greatly in the two treatments. Available phosphate concentration in the soil with the deep tillage treatment was lower, K concentration of exchangeable cation decreased greatly than these with conventional tillage treatment. In the growth at 27th day after planting plant, stem length to 10th node from the first node, leaf width with deep tillage treatment were longer, bearing node of the first and second flower and wilting degree were lower than these with conventional tillage treatment. In the growth of harvesting time, the stem length to 30th node from the first node with the deep tillage treatment were longer, leaf discoloration degree was lower than these with conventional tillage treatment. Also, the harvested fruits length, diameter, peel hardness, and weight were significantly better than these with conventional tillage treatment.