• Title/Summary/Keyword: Convective heat transfer coefficients

Search Result 124, Processing Time 0.025 seconds

Convective Boiling of R-l34a in a Bundle of Smooth Tubes

  • Kim, Jung-Oh;Cho, Jin-Pyo;Kim, Nae-Hyun;Choi, Kuk-Kwang
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.79-87
    • /
    • 2002
  • In this study, flow boiling experiments were performed using R-134a on a plain tube bundle. Tests were conducted for the following range of variables; quality from 0.1 to 0.9, mass flux from 8kg/$m^2$s to 26 kg/$m^2$s and heat flux from 10kW/$m^2$ to 40kW/$m^2$. The heat transfer coefficients were strongly dependent on the heat flux. However, they were almost independent on the mass flux or quality. The data are compared with the modified Chen model, which predicted satisfactorily ($\pm$30%) the data. The Original Chen model, however, did not adequately predict the effect of quality. The reason may be attributed to the flow pattern of the present test, where the bubbly flow prevailed for the entire test range. The heat transfer coefficients of the tube bundle were 6~40% higher than those of the single tube pool boiling.

Effect of Cross/Parallel Rib Configurations on Heat/Mass Transfer in Rotating Two-Pass Turbine Blade Internal Passage (회전하는 터빈 블레이드 내부 이차냉각유로에서 엇갈린요철과 평행요철이 열/물질전달에 미치는 영향)

  • Lee, Se-Yeong;Lee, Dong-Ho;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1249-1259
    • /
    • 2002
  • The present study investigates the convective heat/mass transfer inside a cooling passage of rotating gas-turbine blades. The rotating duct has various configurations made of ribs with 70。 attack angle, which are attached on leading and trailing surfaces. A naphthalene sublimation technique is employed to determine detailed local heat transfer coefficients using the heat and mass transfer analogy. The present experiments employ two-surface heating conditions in the rotating duct because the surfaces, exposed to hot gas stream, are pressure and suction side surfaces in the middle passages of an actual gas-turbine blade. In the stationary conditions, the parallel rib arrangement presents higher heat/mass transfer characteristics in the first pass, however, these characteristics disappear in the second pass due to the turning effects. In the rotating conditions, the cross rib present less heat/mass transfer discrepancy between the leading and the trailing surfaces in the first pass. In the second pass, the heat/mass transfer characteristics are much more complex due to the combined effects of the angled ribs, the sharp fuming and the rotation.

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익형의 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.1061-1064
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익혀의 열전달에 미치는 영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.713-716
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

Influence of Unsteady Wake on Flow Characteristics and Heat Transfer from Linear Turbine Cascade (비정상후류가 선형터빈익렬의 유동 특성 및 익형의 열전달에 미치는영향에 관한 연구)

  • Yoon, Soon-Hyun;Sim, Jae-Kyung;Lee, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.393-396
    • /
    • 1998
  • To examine the influence of unsteady wake on the flow and heat transfer characteristics, an experiment has been conducted in a four-vane linear cascade. Flow and heat transfer measurements are made for the inlet Reynolds number of 66000(based on chord length and free-stream velocity). Turbulent intensity and stress were measured using hot wire anemometer, and to measure the convective heat transfer coefficients on the blade surfaces liquid crystal/gold film Intrex technique was used. The disturbance by the unsteady wake is characterized by the unresolved unsteadiness. The unsteady wake enhances the turbulent motion of flow in the cascade passage. It also promotes the boundary layer development and transition. The results show that heat transfer coefficients on the suction surface increase with increasing unresolved unsteadiness.

  • PDF

Forced Convective Boiling of Pure Refrigerants in a Bundle of Enhanced Tubes (전열촉진관군의 순수냉매 강제대류비등)

  • Kim, Nae-Hyeon;Jeong, Ho-Jong;Jo, Jin-Pyo;Choe, Guk-Gwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1831-1843
    • /
    • 2001
  • In this study, convective boiling tests were conducted for enhanced tube bundles. The surface geometry consists of pores and connecting gaps. Tubes with three different pore sizes (d$_{p}$ = 0.20, 0.23 and 0.27 mm) were tested using R-123 and R-l34a for the following range: 8 kg/m$^2$s G 26 kg/m$^2$s, 10 kW/m$^2$ q0 40 kW/m$^2$and 0.1 $\chi$ 0.9. The convective boiling heat transfer coefficients were strongly dependent on heat flux with negligible dependency on mass flux or quality. For the present enhanced geometry (pores and gaps), the convective effect was apparent. The gaps of the present tubes may have served routes for the passage of two-phase mixtures, and enhanced the boiling heat transfer. The convective effect was more pronounced at a higher saturation temperature. More bubbles will be generated at a higher saturation temperature, which will lead to enhanced convective contribution. The pore size where the maximum heat transfer coefficient was obtained was larger for R-l34a (d$_{p}$ = 0.27 mm) compared with that for R-123 (d$_{p}$ = 0.23 mm). This trend was consistent with the previous pool boiling results. For the enhanced tube bundles, the convective effect was more pronounced for R-134a than for R-123. This trend was reversed for the smooth tube bundle. Possible reasoning is provided based on the bubble behavior on the tube wall. Both the modified Chen and the asymptotic model predicted the present data reasonably well. The RMSEs were 14.3% for the modified Chen model and 12.7% for the asymptotic model.model.

Experimental Investigation on Flow Boiling of R-22 in a Alumium Extruded Tube (알루미늄 다채널 압출관 내 R-22 대류 비등에 관한 실험 연구)

  • Sim, Yong-Sup;Min, Chang-Keun;Lee, Eung-Ryul;Sin, Tae-Ryong;Kim, Nae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1340-1345
    • /
    • 2004
  • Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with $D_h=1.41mm$ . The test range covered mass flux from 200 to 600 $kg/m^2s$, heat flux from 5 to 15 $kW/m^2$ and saturation temperature from $5^{\circ}C$ to $15^{\circ}C$ . The heat transfer coefficient curve shows a decreasing trend after a certain quality(critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.

  • PDF

Condensation Heat Transfer Correlation for Smooth Tubes in Annular Flow Regime

  • Han Dong-Hyouck;Moon C.;Park C.;Lee Kyu-Jung
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1275-1283
    • /
    • 2006
  • Condensation heat transfer coefficients in a 7.92 mm inside diameter copper smooth tube were obtained experimentally for R22, R134a, and R410A. Working conditions were in the range of $30-40^{\circ}C$ condensation temperature, $95-410 kg/m^2s$ mass flux, and 0.15-0.85 vapor quality. The experimental data were compared with the eight existing correlations for an annular flow regime. Based on the heat-momentum analogy, a condensation heat transfer coefficients correlation for the annular flow regime was developed. The Breber et al. flow regime map was used to discern flow pattern and the Muller-Steinhagen & Heck pressure drop correlation was used for the term of the proposed correlation. The proposed correlation provided the best predicted performance compared to the eight existing correlations and its root mean square deviation was less than 8.7%.

The Effect of Ultrasonic Vibration on Heat Transfer Augmentation of Forced Convective Flow in Circular Pipes (초음파 진동이 관내 강제대류 유동의 열전달 증진에 미치는 영향)

  • Jeong Ji Hwan
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.275-280
    • /
    • 2004
  • Augmentation of heat transfer by ultrasonic vibration in pipes are investigated. Measurements of convective heat transfer coefficients on circular pipe walls are made with and without ultrasonic vibration applied to water. These data are compared with each other to quantify the effects of ultrasonic vibration on heat transfer enhancement. Numerical analysis has been also performed in order to extend the ranges of examined temperature and flow rate. FLUENT Ver.6.1 is used to simulate velocity and temperature fields and evaluate heat transfer coefficient with and without ultrasonic vibration. The results show that the ultra- sonic vibration enhances the Nusselt number of forced convection flow and the increase rate strongly depends on flow rate.

Study on Heat Transfer Characteristics of Evaporator with Horizontal Small Diameter Tubes using Natural Refrigerant Propane (자연냉매 프로판을 이용한 수평세관 증발기의 열전달 특성에 관한 연구)

  • Ku, H.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • The evaporation heat transfer characteristics of propane(R-290) in horizontal small diameter tubes were investigated experimentally. The test tubes have inner diameters of 1 mm and 4 mm. Local heat transfer coefficients were measured at heat fluxes of 12, $24\;kW/m^2$, mass fluxes of 150, $300\;kg/m^2s$, and evaporation temperature of $15^{\circ}C$. The experimental results showed that the evaporation heat transfer coefficient of R-290 has an effect on heat flux, mass flux, tube diameter, and vapor quality. The evaporation heat transfer of R-290 has an influenced on nucleate boiling at low quality and convective boiling at high quality. The evaporation heat transfer coefficient of R-290 increases with decreasing inner tube diameter. And the evaporation heat transfer coefficient of R-290 is about 1~3 times higher than that of R-134a.