• Title/Summary/Keyword: Convective Heat Transfer Correlations

Search Result 58, Processing Time 0.023 seconds

A COMPUTATIONAL STUDY ON FREE CONVECTION FOR THERMAL PERFORMANCE EVALUATION OF A SWNT THIN-FILM HEATER (SWNT 투명박막히터의 열성능 평가를 위한 자유대류 열전달 해석)

  • Kwak, H.S.;Lee, S.E.;Park, K.S.;Kim, K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.315-320
    • /
    • 2009
  • A computational investigation is conducted on free convection from a thin plate having a surface heat source. The thermal configuration simulates the recently-proposed transparent film heater made of a single-walled carbon nanotube film on a glass substrate. The Navier-Stokes computations are carried out to study laminar free convection from the heater. Parallel numerical experiments are performed by using a simplified design analysis model which solve the conduction equation with the boundary conditions utilizing several existing correlations for convective heat transfer coefficient. Comparison leads to the most suitable boundary condition for the thermal model to evaluate the performance evaluation of a transparent thin-film heater.

  • PDF

Development of a New Correlation for the Heat Transfer Coefficient of Turbulent Supercritical Carbon Dioxide Flow (초임계 상태 이산화탄소 난류유동의 새로운 열전달계수 상관식 개발)

  • 임홍영;최영돈;김용찬;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.4
    • /
    • pp.274-286
    • /
    • 2003
  • Numerical simulations are performed to investigate the turbulent convective heat transfer of the supercritical carbon dioxide flows in vertical and horizontal square ducts. The gas cooling process at the supercritical state experiences a sudden change in thermodynamic and transport properties. This results in the extraordinary variations of the heat transfer coefficients in the supercritical state, which are much different from those of single or two phase flows. Algebraic second moment closure which can include the effects of large thermophysical property variations of carbon dioxide and of buoyancy is employed to model the Reynolds stresses and turbulent heat fluxes in the governing equations. The previous correlations for the turbulent heat transfer coefficient for the supercritical carbon dioxide flows couldn't reflect the buoyancy effect. The present results are used to establish a new heat transfer coefficient correlation including the effects of large thermophysical property variation and buoyancy on in-duct cooling process of supercritical carbon dioxide.

Investigation on Characteristics of Pressure Drop and Heat Transfer in the Spirally Indented Tubes (스파이럴리 인덴티드 전열관 내부에서의 압력 강하 및 전열 특성에 관한 고찰)

  • Kim, Do-Hyoung;Kim, Ik-Saeng;Kim, Kyun-Seok;Yoo, Byoung-Hoon;Kim, Chun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.440-446
    • /
    • 2001
  • The pressure drop and heat transfer of the spirally indented tubes were measured and analyzed. Eight sample tubes of indentation depth 0.4, 0.7mm and indentation pitch 10, 14, 20, 26mm were used in this experimental tests. And all the tubes have same outer diameter of 16mm, and same indentation start number of I. Air was used as the internal fluid from 10000 to 50000 for Reynolds Number. The friction factors and heat transfer coefficients have increased when indentation depths increase and indentation pitches decrease. Finally, the correlations were made between the effect of the tube geometry and characteristics of tubes for the pressure drop and heat transfer.

  • PDF

Study on the Experiment and Numerical Computation of Forced Convection Heat Transfer around Circular Cylinder in a Rectangular Duct (사각덕트 내에서 원형 실린더 주위의 강제대류 열전달에 대한 실험과 수치계산에 관한 연구)

  • 윤영환;김경환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.490-498
    • /
    • 2004
  • This paper measures the forced convective heat transfer from heated cylinder to air flow in a rectangular duct at Re$_{D}$ =2,337, 4,589, 6,621 and 7,944 through experiments. And the heat transfer is computed by 3-D numerical computation in which various turbulent models are applied. It is shown through the comparison of experimental and computed data that numerical computation with standard k-$\varepsilon$ model predicts the experimental data most accurately. Furthermore, the correlation from the computed heat transfer is almost similar to that from the experiment when Re$_{D}$ is greater than 4,589. In addition, the correlation of McAdams is the closest to that from experimental data among various correlations from literature in the range of Reynolds number.ber.

Numerical Analysis on the Performance for Automobile Heat Storage System Using Phase Change Materical (상변화물질을 이용한 자동차용 열저장 시스템의 성능을 위한 수치 해석)

  • 이관수;김혁제;백창인;송영길;한창섭;김등진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.187-198
    • /
    • 1996
  • In this study, the performance of an automobile heat storage system using PCM is numerically simulated. For the analysis of system performance. The phase-change of the PCM and the transient forced convective heat transfer for the HTF are considered simultaneously as a conjugate problem. The phase-change behavior is effectively analyzed using a concept of thermal resistance. From the correlations of phase change rate and heat transfer due to the variations of flow rate of HTF around PCM, the automobile heat storage system performance is predicted. The present results amy be used as the fundamental information for the design of automobile heat storage system.

  • PDF

SEPARATION OF CsCl FROM LiCl-CsCl MOLTEN SALT BY COLD FINGER MELT CRYSTALLIZATION

  • Versey, Joshua R.;Phongikaroon, Supathorn;Simpson, Michael F.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.395-406
    • /
    • 2014
  • This study provides a fundamental understanding of a cold finger melt crystallization technique by exploring the heat and mass transfer processes of cold finger separation. A series of experiments were performed using a simplified LiCl-CsCl system by varying initial CsCl concentrations (1, 3, 5, and 7.5 wt%), cold finger cooling rates (7.4, 9.8, 12.3, and 14.9 L/min), and separation times (5, 10, 15, and 30 min). Results showed a potential recycling rate of 0.36 g/min with a purity of 0.33 wt% CsCl in LiCl. A CsCl concentrated drip formation was found to decrease crystal purity especially for smaller crystal formations. Dimensionless heat and mass transfer correlations showed that separation production is primarily influenced by convective transfer controlled by cooling gas flow rate, where correlations are more accurate for slower cooling gas flow rates.

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Son Chang-Hyo;Kim Dae-Hui;Choi Sun-Muk;Kim Young-Ryul;Oh Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.167-174
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500kg/m^2s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greater effect on nucleate boiling than convective boiling. The evaporation heat transfer coefficient of $CO_2$ is highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But the existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Evaporation Heat Transfer of Carbon Dioxide in a horizontal Round Tube (수평원관내 $CO_2$의 증발열전달)

  • Kyoung, Nam-Soo;Jang, Seung-Il;Choi, Sun-Muk;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.262-267
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ in a horizontal round tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 7.75 mm, and length of 5 m. The experiments were conducted at mass flux of 200 to 500 $kg/m^2s$, saturation temperature of $-5^{\circ}C$ to $5^{\circ}C$, and heat flux of 10 to 40 $kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. In comparison with teat results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

  • PDF

Convective Boiling of R-410A in an Aluminum Flat Tube for Air-Conditioning Application (공조용 알루미늄 납작관 내의 R-410A 대류 비등)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3006-3013
    • /
    • 2015
  • Flat tube heat exchangers can improve the thermal performance significantly compared with round tube heat exchangers. For proper design of flat tube heat exchangers, one should know the tubeside heat transfer coefficients. In this study, convective boiling heat transfer coefficients of R-410A were obtained in a flat extruded aluminum tube with $D_h=1.41mm$. The test range covered mass flux from 200 to $600kg/m^2s$, heat flux from 5 to $15kW/m^2$ and saturation temperature from $5^{\circ}C$ to $15^{\circ}C$. The heat transfer coefficient curve shows a decreasing trend after a certain quality(critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kaew-On et al. correlations reasonably predicted the present data.

Evaporation Heat Transfer and Pressure Drop of $CO_2$ in a Small diameter Tube (세관내 이산화탄소의 증발 열전달 및 압력강화)

  • Jang, Seong-Il;Choi, Sun-Muk;Kim, Dae-Hui;Park, Ki-Won;Oh, Hoo-Kyu
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.189-194
    • /
    • 2005
  • The evaporation heat transfer and pressure drop of $CO_2$ in a small diameter tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 4.57 mm, and length of 4 m. The experiments were conducted at mass flux of 200 to 700 $kg/m^2s$, saturation temperature of $0^{\circ}C$ to $20^{\circ}C$, and heat flux of 10 to 20 $kW/m^2$ . The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation pressure drop of C02 are highly dependent on the mass flux. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient and pressure drop of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient and friction pressure drop of $CO_2$ in a horizontal tube.

  • PDF