• 제목/요약/키워드: Convective Heat Loss

검색결과 54건 처리시간 0.026초

Sensitivity Analysis of Thermal Parameters Affecting the Peak Cladding Temperature of Fuel Assembly

  • Ju-Chan Lee;Doyun Kim;Seung-Hwan Yu;Sungho Ko
    • 방사성폐기물학회지
    • /
    • 제21권3호
    • /
    • pp.359-370
    • /
    • 2023
  • The thermal integrity of spent nuclear fuels has to be maintained during their long-term dry storage. The detailed temperature distributions of spent fuel assemblies are essential for evaluating the integrity of their dry storage systems. In this study, a subchannel analysis model was developed for a canister of a single fuel assembly using the COBRA-SFS code. The thermal parameters affecting the peak cladding temperature (PCT) of the spent fuel assembly were identified, and sensitivity analyses were performed based on these parameters. The subchannel analysis results indicated the presence of a recirculation flow, based on natural convection, between the fuel assembly and downcomer region. The sensitivity analysis of the thermal parameters indicated that the PCT was affected by the emissivity of the fuel cladding and basket, convective heat transfer coefficient, and thermal conductivity of the fluid. However, the effects of the wall friction factor of the canister, form loss coefficient of the grid spacers, and thermal conductivities of the solid materials, on the PCT were predominantly ignored.

핵연료 봉다발내 비틀린 혼합날개의 형상최적설계 (Shape Optimization of A Twist Mixing Vane in Nuclear Fuel Assembly)

  • 정상호;김광용
    • 한국유체기계학회 논문집
    • /
    • 제12권4호
    • /
    • pp.7-13
    • /
    • 2009
  • The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane using the analysis results. Response surface method is employed as an optimization technique. The objective function is defined as a combination of inverse of heat transfer rate and friction loss. Two bend angles of mixing vane are selected as design variables. Thermal-hydraulic performances have been discussed and optimum shape has been obtained as a function of weighting factor in the objective function. The results show that the optimized geometry improves the heat transfer performance far downstream of the mixing vane.

지구온난화가 대청호 수온 및 성층구조에 미치는 영향예측 (Forecasting the Effect of Global Warming on the Water Temperature and Thermal Stratification in Daecheong Reservoir)

  • 차윤철;정세웅;윤성완
    • 환경영향평가
    • /
    • 제22권4호
    • /
    • pp.329-343
    • /
    • 2013
  • According to previous studies, the increased air temperature can lead to change of thermal stratification structure of lakes and reservoirs. The changed thermal stratification may result in alteration of materials and energy flow. The objective of this study was to predict the effect of climate change on the water temperature and stratification structure of Daecheong Reservoir, located in Geum River basin of Korea, using a three-dimensional(3D) hydrodynamic model(ELCOM). A long-term(100 years) weather data set provided by the National Institute of Meteorological Research(NIMR) was used for forcing the 3D model. The model was applied to two different hydrological conditions, dry year(2001) and normal year(2004). It means that the effect of air temperature increase was only considered. Simulation results showed that the surface water temperature of the reservoir tend to increase in the future, and the establishment of thermal stratification can occur earlier and prolonged longer. As a result of heat flux analysis, the evaporative heat loss can increase in the future than now and before. However, the convective heat loss and net long wave radiation from water surface decreased due to increased air temperature.

지중가온이 온실의 난방부하에 미치는 영향 (The Effect of Soil Warming on the Greenhouse Heating Load)

  • 남상운
    • 한국농공학회논문집
    • /
    • 제48권5호
    • /
    • pp.51-60
    • /
    • 2006
  • In order to examine the heat transfer characteristic of a soil warming system and effects of soil warming on the greenhouse heating load, control experiments were performed in two greenhouses covered with double polyethylene film. One treated the soil warming with an electric heat wire and the other treated a control. Inside and outside air temperature, soil temperature and heat flux, and heating energy consumption were measured under the set point of heating temperature of $5,\;10,\;15,\;and\;20^{\circ}C$, respectively. Soil temperatures in a soil warming treatment were observed $4.1\;to\;4.9^{\circ}C$ higher than a control. Heating energy consumptions decreased by 14.6 to 30.8% in a soil warming treatment. As the set point of heating temperature became lower, the rate of decrease in the heating energy consumptions increased. The percentage of soil heat flux in total heating load was -49.4 to 24.4% and as the set point of heating temperature became higher, the percentage increased. When the set point of heating temperature was low in a soil warming treatment, the soil heat flux load was minus value and it had an effect on reducing the heating load. Soil heat flux loads showed in proportion to the air temperature difference between the inside and outside of greenhouse but they showed big difference according to the soil warming treatment. So new model for estimation of the soil heat flux load should be introduced. Convective heat transfer coefficients were in proportion to the 1/3 power of temperature difference between the soil surface and the inside air. They were $3.41\;to\;12.42\;W/m^{2}^{\circ}C$ in their temperature difference of $0\;to\;10^{\circ}C$. Radiative heat loss from soil surface in greenhouse was about 66 to 130% of total heating load. To cut the radiation loss by the use of thermal curtains must be able to contribute for the energy saving in greenhouse.

좁은 채널 내의 대향분류 메탄-공기 비예혼합 화염의 거동 특성 (Behavioral Characteristics of the Non-Premixed Methane-Air Flame Oppositely Injected in a Narrow Channel)

  • 윤영민;이민정;조상문;김남일
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.264-271
    • /
    • 2009
  • Characteristics of a counter flowing diffusion flame, which is formulated by an oppositely-injected methane-jet flow in a narrow channel of a uniform air flow. The location of the flame fronts and the flame lengths were compared by changing the flow rates of fuel. To distinguish the effects of the narrow channel on the diffusion flame, a numerical simulation for an ideal two-dimensional flame was conducted. Overall trends of the flame behavior were similar in both numerical and experimental results. With the increase of the ratio of jet velocity to air velocity flame front moved farther upstream. It is thought that the flow re-direction in the channel suppresses fuel momentum more significantly due to the higher temperature and increased viscosity of burned gas. Actual flames in a narrow channel suffer heat loss to the ambient and it has finite length of diffusion flame in contrast to the numerical results of infinite flame length. Thus a convective heat loss was additionally employed in numerical simulation and closer results were obtained. These results can be used as basic data in development of a small combustor of a nonpremixed flame.

A System Engineering Approach to Predict the Critical Heat Flux Using Artificial Neural Network (ANN)

  • Wazif, Muhammad;Diab, Aya
    • 시스템엔지니어링학술지
    • /
    • 제16권2호
    • /
    • pp.38-46
    • /
    • 2020
  • The accurate measurement of critical heat flux (CHF) in flow boiling is important for the safety requirement of the nuclear power plant to prevent sharp degradation of the convective heat transfer between the surface of the fuel rod cladding and the reactor coolant. In this paper, a System Engineering approach is used to develop a model that predicts the CHF using machine learning. The model is built using artificial neural network (ANN). The model is then trained, tested and validated using pre-existing database for different flow conditions. The Talos library is used to tune the model by optimizing the hyper parameters and selecting the best network architecture. Once developed, the ANN model can predict the CHF based solely on a set of input parameters (pressure, mass flux, quality and hydraulic diameter) without resorting to any physics-based model. It is intended to use the developed model to predict the DNBR under a large break loss of coolant accident (LBLOCA) in APR1400. The System Engineering approach proved very helpful in facilitating the planning and management of the current work both efficiently and effectively.

부력의 영향을 최소화한 조건에서 대향류 확산화염의 화염 소화에 관한 실험적 연구 (Experimental Study on Flame Extinction in Buoyancy-minimized Counterflow Diffusion Flame)

  • 정용호;박진욱;박정;권오붕;윤진한;길상인
    • 한국연소학회지
    • /
    • 제19권2호
    • /
    • pp.8-14
    • /
    • 2014
  • Experiments were conducted to clarify role of the outermost edge flame on low-strain-rate flame extinction in buoyancy-suppressed non-premixed methane flames diluted with He and $N_2$. The use of He curtain flow produced a microgravity level of $10^{-2}-10^{-3}g$ in $N_2$- and He-diluted non-premixed counterflow flame experiments. The critical He and $N_2$ mole fractions at extinction with a global strain rate were examined at various burner diameters (10, 20, and 25 mm). The results showed that the extinction curves differed appreciably with burner diameter. Before the turning point along the extinction curve, low-strain-rate flames were extinguished via shrinkage of the outermost edge flame with and without self-excitation. High-strain-rate flames were extinguished via a flame hole while the outermost edge flame was stationary. These characteristics could be identified by the behavior of the outermost edge flame. The results also showed that the outermost edge flame was not influenced by radiative heat loss but by convective heat addition and conductive heat losses to the ambient He curtain flow. The numerical results were discussed in detail. The self-excitation before the extinction of a low-strain-rate flame was well described by a dependency of the Strouhal number on global strain rate and normalized nozzle exit velocity.

고온 태양열 화학반응기 열전달 성능 평가 (Estimation of Heat Transfer Characteristics for a Solar Chemical Reactor)

  • 강경문;이주한;조현석;서태범
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2221-2226
    • /
    • 2008
  • The objective of this paper is to describe the experimental and numerical investigation of the analysis of the heat transfer in a solar chemical reactor. These are compared about methane steam reforming process in the solar chemical reactor which was a volumetric absorber consisting of honeycomb and a multilayered catalyst supports. With this high operating temperature, convective heat loss, thermal fracture are important features for designing SCR. In order to estimate the system performance and to design the actual solar reactor with various conditions, CFD analysis was used in this study. The nickel oxide porous metal is inserted inside the solar chemical reactor to increase the conversion rate of the reforming reaction. Simulation has been carried out based on the experimental data. According to the simulation results, the optimum methane-steam mole ratio and thickness and numbers of catalyst supports were obtained.

  • PDF

저기압 고산소 환경에서 화염 전파특성에 관한 실험적 연구 (Experimental Study on the Flame Spread Characteristics under Reduced Atmospheric Pressures and Elevated Oxygen Concentrations)

  • 양호동;권행준;박설현
    • 한국화재소방학회논문지
    • /
    • 제30권6호
    • /
    • pp.78-83
    • /
    • 2016
  • 발사체의 지상 운영과정이나 발사과정에서 일어날 수 있는 화재와 폭발사고 예방을 위해 1단 동체 내부에 형성될 수 있는 연소 환경에서 화염의 전파특성을 고찰해 보았다. 이를 위해 1단 동체 내부에 형성될 수 있는 고산소-저기압 환경을 연소챔버 내에 조성하고 고체연료를 점화시켜 화염 전파율을 측정하였다. 고체연료로는 두께가 0.18 mm인 광섬유를 사용하였다. 주어진 조건에서 산소농도가 증가함에 따라 광섬유를 따라 전파하는 화염의 속도는 급격히 증가하였지만 챔버 내의 압력이 대기압에 가까질 수록 화염의 전파속도는 감소하였다. 압력 증가에 따른 화염전파율의 감소의 원인을 파악하기 위해 대류열전달계수와 화염전파율의 압력 상관성 분석해 보았으며, 이를 통해 압력이 낮아질수록 대류 열손실이 줄어들어 화염전파율이 증가하는 것을 확인하였다.

환상유로에 있어서 수직고온관의 과도적 냉각과정에 관한 연구 (A study on the transient cooling process of a vertical-high temperature tube in an annular flow channel)

  • 정대인;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.156-164
    • /
    • 1986
  • In the case of boiling on high temperature wall, vapor film covers fully or parcially the surface. This phenomenon, film boiling or transition boiling, is very important in the surface heat treatment of metal, design of cryogenic heat exchanger and emergency cooling of nuclear reactor. Mainly supposed hydraulic-thermal accidents in nuclear reactor are LCCA (Loss of Coolant Accident) and PCM (Power-Cooling Mismatch). Recently, world-wide studies on reflooding of high temperature rod bundles after the occurrence of the above accidents focus attention on wall temperature history and required time in transient cooling process, wall superheat at rewet point, heat flux-wall superheat relationship beyond the transition boiling region, and two-phase flow state near the surface. It is considered that the further systematical study in this field will be in need in spite of the previous results in ref. (2), (3), (4). The paper is the study about the fast transient cooling process following the wall temperature excursion under the CHF (Critical Heat Flux) condition in a forced convective subcooled boiling system. The test section is a vertically arranged concentric annulus of 800 mm long and 10 mm hydraulic diameter. The inner tube, SUS 304 of 400 mm long, 8 mm I.D, and 7 mm O.D., is heated uniformly by the low voltage AC power. The wall temperature measurements were performed at the axial distance from the inlet of the heating tube, z=390 mm. 6 chromel- alumel thermocouples of 76 .mu.m were press fitted to the inner surface of the heating tube periphery. To investigate the heat transfer characteristics during the fast transient cooling process, the outer surface (fluid side) temperature and the surface heat flux are computed from the measured inner surface temperature history by means of a numerical method for inverse problems of transient heat conduction. Present cooling (boiling) curve is sufficiently compared with the previous results.

  • PDF