• Title/Summary/Keyword: Convection term

Search Result 129, Processing Time 0.024 seconds

FITTED MESH METHOD FOR SINGULARLY PERTURBED REACTION-CONVECTION-DIFFUSION PROBLEMS WITH BOUNDARY AND INTERIOR LAYERS

  • Shanthi V.;Ramanujam N.;Natesan S.
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.49-65
    • /
    • 2006
  • A robust numerical method for a singularly perturbed second-order ordinary differential equation having two parameters with a discontinuous source term is presented in this article. Theoretical bounds are derived for the derivatives of the solution and its smooth and singular components. An appropriate piecewise uniform mesh is constructed, and classical upwind finite difference schemes are used on this mesh to obtain the discrete system of equations. Parameter-uniform error bounds for the numerical approximations are established. Numerical results are provided to illustrate the convergence of the numerical approximations.

Modeling of transient temperature distribution in multilayer asphalt pavement

  • Teltayev, Bagdat B.;Aitbayev, Koblanbek
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.133-152
    • /
    • 2015
  • Mathematical model has been developed for determination of temperature field in multilayer pavement and subgrade, which considers transfer of heat by conduction and convection, receiving of heat from total solar radiation and atmosphere emission, output of heat due to the emission from the surface of pavement. The developed model has been realized by the finite element method for two dimensional problem using two dimensional second order finite element. Calculations for temperature field have been made with the programme realized on the standard mathematical package MATLAB. Accuracy of the developed model has been evaluated by comparison of temperatures, obtained theoretically and experimentally. The results of comparison showed high accuracy of the model. Long-term calculation (within three months) has been made in pavement points in accordance with the data of meteorological station for air temperature. Some regularities have been determined for variation of temperature field.

Assessment of Reynolds Stress Turbulence Closures for Separated Flow over Backward-Facing Step (후향계단을 지나는 박리류에 대한 레이놀즈응력 모델의 성능 평가)

  • ;;Oh, Myung-Taek
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3014-3021
    • /
    • 1995
  • This study is carried out in order to evaluate the performances of the Reynolds stress turbulence models such as SSG and GL models in the calculation of separated flow over backward-facing stepp.In addition, two slow return-to-isotropy models, YA and Rotta models combined with rapid part of SSG model are also tested. The finite volume method is used to discretize the governing differential equations, and the power-law scheme is used to approximate the convection terms. The SIMPLE algorithm is used for pressure correction in the governing equations. The results show that SSG model gives the better prediction near the reattachment point than GL model. In cases that the rapid term of SSG model is combined with Rotta and YA slow models, the results show the better predictions of stress components in recirculation zone, but indicate inaccuracy in the predictions of mean velocity.

The Effect of Pressure on Laminar Film Condensation along a Horizontal Plate (수평평판의 층류 막응축에서 압력의 영향)

  • Lee, Euk-Soo;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.12
    • /
    • pp.945-953
    • /
    • 2008
  • Laminar film condensation of saturated vapor in forced flow over a flat plate is analysed. The problem is formulated as exact boundary-layer solution and integral approximate solution. From numerical solutions of the governing equations, it is found that the energy transfer by convection and the effect of inertia term in the momentum equation in negligibly small for low pressure but quite important for high pressure. The condensate rate, liquid-vapor interfacial shear stress and local heat transfer are strongly dependent on the reduced pressure $P_r$ and the modified Jacob number Ja/Pr.

The Flow Analysis of Past Flow a Circular Cylinder By Direct Numerical Simulation (DNS에 의한 원주후류에 대한 유동해석)

  • ;Mamoru TANAHASHI;Toshio MIYAUCHI
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.52-57
    • /
    • 2001
  • Laminar two-dimensional time-dependent flow past a circular cylinder is numerically investigated using direct numerical simulation for the low Reynolds number (Re=164∼280). The higher-order finite difference scheme is employed for the spatial distributions along with the second order Adams-Bashforth and the first order backward-Euler time integration. The convection term is applied by the 7th order up wind scheme and the pressure and viscosity terms are applied by the 4th order central difference. The grid system makes use of the regular grid system and it is generated by an equation. The calculated results of drag coefficients, lift coefficients, pressure distributions, and vorticity contours and other information are compared with experimental and numerical ones. These results obtained by the present DNS show good agreement with the previous studies.

  • PDF

Numerical Analysis on Combined Convection for a Vertical Cocentric Cylinder with External Fins (외부로 휜이 있는 수직이중관내의 조합대류 유동에 관한 수치적 연구)

  • Sohn, Sang-Suk;Lee, Chae-Moon;Yim, Jang-Soon
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.14 no.2
    • /
    • pp.118-124
    • /
    • 1985
  • The motion of a fluid in the closed annular cavity formed by two concentric vertical cylinders with externally finned tube has been analysed by a numerical solutions of the equation of momentum and energy. For the calculation procedure, the fluid is assumed to have constant thermo-dynamic and transporties except for the density, which is temperature-dependent in the buoyancy term of the vertical momentum equation (Boussinesq approximation). The govern ins equations for velocity and temperature are solved by a finite difference technique which incoorporates a scheme for treating the coupled variables. Results are presented for a range of the Rayleigh number and for various values of the fin height and the number of fins.

  • PDF

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF THERMAL STRATIFICATION IN THE UPPER PLENUM OF THE MONJU FAST BREEDER REACTOR (몬주 고속증식로 상부플레넘에서의 열성층에 관한 전산유체역학 해석)

  • Choi, S.K.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.41-48
    • /
    • 2012
  • A numerical analysis of thermal stratification in the upper plenum of the MONJU fast breeder reactor was performed. Calculations were performed for a 1/6 simplified model of the MONJU reactor using the commercial code, CFX-13. To better resolve the geometrically complex upper core structure of the MONJU reactor, the porous media approach was adopted for the simulation. First, a steady state solution was obtained and the transient solutions were then obtained for the turbine trip test conducted in December 1995. The time dependent inlet conditions for the mass flow rate and temperature were provided by JAEA. Good agreement with the experimental data was observed for steady state solution. The numerical solution of the transient analysis shows the formation of thermal stratification within the upper plenum of the reactor vessel during the turbine trip test. The temporal variations of temperature were predicted accurately by the present method in the initial rapid coastdown period (~300 seconds). However, transient numerical solutions show a faster thermal mixing than that observed in the experiment after the initial coastdown period. A nearly homogenization of the temperature field in the upper plenum is predicted after about 900 seconds, which is a much shorter-term thermal stratification than the experimental data indicates. This discrepancy is due to the shortcoming of the turbulence models available in the CFX-13 code for a natural convection flow with thermal stratification.

A Numerical Study of Smoke Movement with Radiation in Atrium Fires (아트리움에서 화재 발생시 복사가 고려된 연기거동에 대한 수치해석 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2001
  • This paper describes the smoke filling process of a fire field model based on a self-developed SMEP (Smoke Movement Estimating Program) codo to the simulation of fire induced flows in the atrium space (SIVANS atrium at Japan) containing smoke radiation effect. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown a better prediction than the result calculated by only convection effect in comparison with the experimental data. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire should be necessary in order to get more realistic result. Also the numerical results indicated that the smoke layer is developing at a rate of about 0.1 m/s. It would take about 450 seconds after starting the ultra fast fire of 560 kW that the smoke layer move down to 1.5m above the escape level.

  • PDF

Analysis of Binder Aging Levels in Asphalt Mixture Caused by Short-term Aging Conditions Using the GPC Technique (GPC를 이용한 아스팔트 혼합물의 단기노화 조건에 따른 노화도 분석)

  • Kim, Yeongsam;Yun, Jiyeon;Jeong, Seungho;Kim, Kwangwoo
    • International Journal of Highway Engineering
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2016
  • PURPOSES : This study aims to show the difference of the binder aging level in the hot-mix asphalt (HMA) mixture after short-term aging (SA) under different aging conditions, such as mixture temperature and duration in hour. METHODS : Three SA times (i.e., 1 h, 2 h, and 4 h) at two temperatures (i.e., $160^{\circ}C$ and $180^{\circ}C$) were used for the normal mixtures prepared using a PG64-22 asphalt. The field long-term aging (LA) was simulated by applying the same LA procedure (65 h at $110^{\circ}C$) to all compacted specimens, prepared at the air void of 7% using each SA-treated mixture, in a convection oven. The binder aging level was measured in terms of large molecular size by gel-permeation chromatography (GPC) from the mixture and the absolute viscosity (AV) from the recovered binder. The aging levels were evaluated using those two properties after SA and LA, and then compared based on the normal SA (NSA) mixture (1 h at $160^{\circ}C$). The service life reduction caused by SA in various conditions was estimated based on the aging level of the field cores from different locations in various service lives. RESULTS : The results of the laboratory evaluation indicated that the binder of the mixture, which was treated at longer SA time and higher temperature, showed a significantly higher aging level than the NSA mixture. The binder aging level from a longer time, such as 2 h and 4 h SA, or at a higher temperature ($180^{\circ}C$), were estimated to be similar to that of the mixtures, which had already been in field service for several years. CONCLUSIONS : The HMA mixture should be produced at a moderate temperature, such as $160^{\circ}C$, and placed within a limited hauling and queuing time to avoid a significant short-term aging of the binder before placement in the field pavement. The SA for a longer time at a higher temperature than the NSA condition was found to be detrimental to the service life of the asphalt pavement.

Modification of Linear Polyphenylene Sulfide with Functional Elastomers and Its Properties (기능성 엘라스토머를 이용한 선형 폴리페닐렌 설파이드의 개질 및 그 특성)

  • Kim, Sungki;Hong, In-Kwon;Lee, Sangmook
    • Polymer(Korea)
    • /
    • v.37 no.3
    • /
    • pp.399-404
    • /
    • 2013
  • In order to develop the blends with good long-term thermal stability and tensile elongation, the blends of polyphenylene sulfide (PPS) and 7 kinds of elastomer were tested. PPS/elastomer (90/10, 80/20, 70/30) blend samples were prepared by compression molding after twin screw extrusion or punching after sheet extrusion. Rheological, mechanical property and morphology of the blends were analyzed by capillary rheometer, UTM, impact tester, and SEM. For long-term thermal stability tests, the mechanical properties were measured again after the samples were stored in a convection oven for a week. The tensile strengths were almost same regardless of kinds of elastomer and the tensile elongation was the maximum for the PPS/m-EVA blend. As the content of elastomer increased, the elongation increased but delamination occurred at 30 wt% of elastomer content. The tensile strength increased but the elongation decreased seriously after thermal aging. Many problems related with PPS processing could be solved by adding a small amount of the elastomers partially compatibile with PPS and it would be applicable to develop various PPS grades.