• Title/Summary/Keyword: Convection heat transfer coefficient

Search Result 192, Processing Time 0.027 seconds

Development of Heat Transfer Predicting Model for Cold forging Steel(SCr420) During Quenching Process (냉간 단조용 SCr420 강의 퀜칭 시 열전달 예측모델 개발)

  • 진민호;장지웅;강성수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.68-71
    • /
    • 2003
  • Heat treatment is one of the critical manufacturing processes that determine the quality of a product. This paper presents experimental and analytical results for the quench of a ring gear in stagnant oil. The goal of this study is to develop heat transfer predicting model in an overall analysis of the quenching process. Thermal conductivities which are dependant on temperatures and convection coefficients which are obtained by inverse method are used to develop the accurate heat transfer model. The results of heat transfer model have a good agreement with experimental results.

  • PDF

Development of Heat Transfer Predicting Model for Cold forging Steel(SCM420) During Quenching Process (냉간 단조용 SCM420 강의 ?칭 시 열전달 예측모델 개발)

  • 진민호;장지웅;김정민;강성수
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.441-448
    • /
    • 2004
  • Heat treatment is one of the critical manufacturing processes that determine the quality of a product. This paper presents experimental and analytical results for the quench of a ring gear in stagnant oil. The goal of this study is to develop heat transfer predicting model in an overall analysis of the quenching process, Thermal conductivities which are dependant on temperatures and convection coefficients which are obtained by inverse method are used to develop the accurate heat transfer model. The results of heat transfer model have a good agreement with experimental results.

A New Correlation on Heat Transfer Coefficient in Horizontal Multi Channels (수평 다채널에서의 열전달 계수에 관한 새로운 상관식)

  • CHOI, Yong-Seok;LIM, Tae-Woo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.5
    • /
    • pp.1388-1394
    • /
    • 2016
  • This paper presents a experimental study of two-phase flow boiling of FC-72 in multi channels. Flow boiling heat transfer coefficients are obtained with mass flux ranging from 152.9 to $353.9kg/m^2s$ and heat flux from 5.6 to $46.1kW/m^2$. The experimental results show that the heat transfer is governed by nucleate boiling mechanism in the low heat flux region. However, it is found that the effects of nucleate boiling and forced convection boiling are combined as the heat flux increases. A new correlation to predict the heat transfer coefficient is developed by using the dimensionless number such as Reynolds number, Weber number, boiling number. This correlation shows good predictive accuracy against the measured data.

A Study on the Determination of the Seasonal Heat Transfer Coefficient in KURT Under Forced Convection (강제대류시 계절에 따른 KURT 내 열전달계수 결정에 관한 연구)

  • Yoon, Chan-Hoon;Kwon, Sang-Ki;Hwang, In-Phil;Kim, Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.189-199
    • /
    • 2010
  • In a high-level waste (HLW) repository, heat is generated by the radioactive decay of the waste. This can affect the safety of the repository because the surrounding environment can be changed by the heat transfer through the rock. Thus, it is important to determine the heat transfer coefficient of the atmosphere in the underground repository. In this study, the heat transfer coefficient was estimated by measuring the indoor environmental factors in the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT) under forced convection. For the experiment, a heater of 5 kw capacity, 2 meters long, was inserted through the tunnel wall in the heating section of KURT in order to heat up the inside of the rock to $90^{\circ}C$, and fresh air was provided by an air supply fan connected to the outside of the tunnel. The results showed that the average air velocity in the heating section after the provision of the air from outside of the tunnel was 0.81 m/s with the Reynolds number of 310,000~340,000. The seasonal heat transfer coefficient in the heating section under forced convection was $7.68\;W/m^2{\cdot}K$ in the summer and $7.24\;W/m^2{\cdot}K$ in the winter.

Experimental Study on Coefficient of air Convection with boundary layer and boiling effects (경계층과 비등효과를 고려한 외기대류계수에 관한 실험연구)

  • Choi Myoung sung;Kim Yun Yong;Song Young Chul;Woo Sang Kyun;Kim Jin Keun;Lee Yun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.711-714
    • /
    • 2004
  • The setting and hardening of concrete is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. In order to predict the exact temperature history in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind, boiling and layer effects. Finally, the prediction model for equivalent coefficient of air convection was theoretically proposed. The coefficient of air convection in the proposed model increases with velocity of wind, and its dependance on wind velocity is varied with types of form. For determining the initial coefficient of air convection, boiling effects must be considered. The coefficient of air convection is affected by boundary layer with respect to the distance from the surface.

  • PDF

The Local Measurements of Single Phase and Boiling Heat Transfer by Confined Planar Impinging Jets (평면충돌제트에 의한 단상 및 비등 열전달의 국소적 측정)

  • Wu, Seong-Je;Shin, Chang-Hwan;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.895-901
    • /
    • 2004
  • Single-phase convection and nucleate boiling heat transfer were locally investigated for confined planar water jets. The detailed distributions of the wall temperature and the convection coefficient as well as the typical boiling curves were discussed. The curve for the single-phase convection indicated the developing laminar boundary layer, accompanied by monotonic increase of the wall temperature in the stream direction. Boiling was initiated from the furthest downstream as heat flux increased. Heat transfer variation according to the streamwise location was reduced as heat flux increased enough to create the vigorous nucleate boiling. Velocity effects were considered for the confined free-surface jet. Higher velocity of the jet caused the boiling incipient to be delayed more. The transition to turbulence precipitated by the bubble-induced disturbance was obvious only for the highest velocity, which enabled the boiling incipient to start in the middle of the heated surface, rather than the furthest downstream as was the case of the moderate and low velocities. The temperature at offset line were somewhat tower than those at the centerline for single-phase convection and partial boiling, and these differences were reduced as the nucleate boiling developed. For the region prior to transition, the convection coefficient distributions were similar in both cases while the temperatures were somewhat lower in the submerged jet. For single-phase convection, transition was initiated at $x/W{\cong}2.5$ and completed soon for the submerged jet, but the onset of transition was retarded to the distance at $x/W{\cong}6$ for the fee-surface jet.

ASSESSMENT OF THE TiO2/WATER NANOFLUID EFFECTS ON HEAT TRANSFER CHARACTERISTICS IN VVER-1000 NUCLEAR REACTOR USING CFD MODELING

  • MOUSAVIZADEH, SEYED MOHAMMAD;ANSARIFAR, GHOLAM REZA;TALEBI, MANSOUR
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.814-826
    • /
    • 2015
  • The most important advantage of nanoparticles is the increased thermal conductivity coefficient and convection heat transfer coefficient so that, as a result of using a 1.5% volume concentration of nanoparticles, the thermal conductivity coefficient would increase by about twice. In this paper, the effects of a nanofluid ($TiO_2$/water) on heat transfer characteristics such as the thermal conductivity coefficient, heat transfer coefficient, fuel clad, and fuel center temperatures in a VVER-1000 nuclear reactor are investigated. To this end, the cell equivalent of a fuel rod and its surrounding coolant fluid were obtained in the hexagonal fuel assembly of a VVER-1000 reactor. Then, a fuel rod was simulated in the hot channel using Computational Fluid Dynamics (CFD) simulation codes and thermohydraulic calculations (maximum fuel temperature, fluid outlet, Minimum Departure from Nucleate Boiling Ratio (MDNBR), etc.) were performed and compared with a VVER-1000 reactor without nanoparticles. One of the most important results of the analysis was that heat transfer and the thermal conductivity coefficient increased, and usage of the nanofluid reduced MDNBR.

Prediction of Temperature Rise in Power Appratus (초고압 전력기기의 온도상승 예측)

  • Kim, S.W.;Park, J.H.;Hahn, S.C.;Lee, B.Y.;Park, K.Y.;Song, W.P.;Kim, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.113-115
    • /
    • 2001
  • In order to design the power appratus such ac bus bar, the current carrying ampacity should be determined, Since it is limited by maxium operating temperature, it is very important to predict temperature-rise on it. The main causes to raise temperature are joule's loss in the current carrying conductor and induced circulating and eddy current in the tank. The heat transfer is divided into convection and radiation on boundary, determining convection heat transfer coefficient is not easy. This paper propose a new technique that can be used to estimate the temperature rise in the extra high voltage bus bar. The heat transfer coefficient is analytically calculated by applying Nusselt Number depending on temperature as well as model geometry. The analytic method which use heat transfer coefficient is coupled with finite element method. The temperature distribution in the bus bar by the proposed method shows good agreement with experimental data.

  • PDF

Prediction of temperature using equivalent thermal network in SPMSM (열 등가회로를 이용한 SPMSM 전동기의 온도 예측)

  • Kim, Do-Jin;Kwon, Soon-O;Jung, Jae-Woo;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.792-793
    • /
    • 2008
  • This paper deals with the temperature calculation using equivalent thermal network for surface mounted permanent magnet synchronous motor(SPMSM) under the steady-state condition. In the equivalent thermal network, heat sources are generated from copper loss and iron loss. Heat transfer consists of conduction, convection and radiation. However, radiation is neglected in this paper because its effect is much smaller than others. Although the heat transfer coefficient in conduction use material property, heat transfer coefficient in convection is difficult to measure due to the atmosphere and ambient condition. Temperatures of each region in SPMSM are measured by thermocouple in operating condition and the thermal resistances of convection are calculated by kirchhoff's current law(KCL) and experimental result. In order to verify the validation and reliability of the proposed equivalent thermal network, temperature which is calculated other load condition is compared with experimental results. Accordingly, temperatures of each region in other SPMSMs will be easily predicted by the proposed equivalent thermal network.

  • PDF

Analysis of Thermal Loading of a Large LPG Engine Piston Using the Inverse Heat Conduction Method (열전도의 역문제 방법을 이용한 대형 LPG 엔진 피스톤의 열부하 해석)

  • Park Chul-Woo;Lee Boo-Youn
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.820-827
    • /
    • 2006
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed.

  • PDF