• Title/Summary/Keyword: Controlled-PM Electromagnetic Levitation System

Search Result 3, Processing Time 0.02 seconds

최소차원 확장형 상태관측기에 의한 제어형 영구자석 자기 부상 시스템의 제로전력 부상 제어 (Zero Power Levitation Control of Controlled-PM Electromagnet Levitation System by Reduced Order Extended State Observer)

  • 김윤현;김솔;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권9호
    • /
    • pp.515-521
    • /
    • 2002
  • This paper presents the scheme that improves control responsibility and stability of the controlled-PM electromagnet levitation system with zero Power controller. A magnetically levitation system is used widely because friction can almost be disappeared. But it is difficult to control due to restraint of controllable area and nonlinear characteristics of electromagnetic force, which is proportioned to a square of the magnetic flux density and is in inverse proportion to a square of the air-gap. So, the application of observer theory in which the levitation system is considered to be a linear dynamic model has resulted in omitting the time dependence on mover's speed. Consequently, the performance of the observer is quite poor during transients. Therefore, this paper proposed the controlled-PM electro-magnetic levitation control method in which the variable load is estimated by using the reduced order extended luenverger observer and its system is controlled at a new zero power equilibrium air-gap position. It is also verified that the proposed control method improve the control performance through simulation and experiment.

만차 조건 자기부상열차의 분기기 구간 주행 시 진동 특성 (Vibration Characteristic of Full Weight Case Maglev Vehicle Running at Switching System)

  • 신현재;이종민;김창현
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.678-684
    • /
    • 2011
  • In 2013, Korea will become the world's second country to operate the urban Maglev system with the inauguration of demonstration line at Incheon International Airport. A prototype Maglev is under the test at KIMM's(Korea Institute of Machinery & Materials, Daejeon) track. This Maglev is an EMS(Electromagnetic suspension)-type vehicle of controlled $8{\pm}3mm$ air gap. The air gap between electromagnet and the guiderail in an EMS-type Maglev must be maintained within an allowable deviation by controlling the magnet. The air gap response is strongly dependent on the structural characteristics of the elevated guideway. For this reason, the interaction between the vehicle with electromagnets and the elevated guideway must be understood to ensure safe running. The purpose of this paper is to compare vibration characteristics of the vehicle on the switching system and other sections when the full weight condition of urban maglev vehicle that 26.5 tons per car(empty car weight 19 tons + passenger condition 7.5 tons), is applied. Through such results, Maglev vehicles and switching system can be established and the levitation stability can be improved.

  • PDF

다수의 수동형 캐리어를 연속 이송시킬 수 있는 새로운 영구자석 선형동기전동기의 설계 (New Design of a Permanent Magnet Linear Synchronous Motor for Seamless Movement of Multiple Passive Carriers)

  • 이기창;김민태;송의호
    • 전력전자학회논문지
    • /
    • 제20권5호
    • /
    • pp.456-463
    • /
    • 2015
  • Nowadays, small quantity batch production, which is so-called a flexible manufacturing system, is a major trend in the modern factory automation industry. The demands for new transportation system are increased gradually, with which multiple passive carriers carrying materials and semi-products are precisely and individually controlled along a single closed rail. Thus, a new type of permanent magnet linear synchronous motor (PMLSM), which consists of state coils on a single rail and PM movers as many as carriers, is proposed in this paper. The rail can be segmented as modules with pairs of coils and a current amplifier, which makes the transportation system simple; therefore, the rail can be easily extended and repaired. A design method of the new PMLSM with a single carrier is proposed, which can be thought as a new version of PMLSM, a coil-segmented coreless PMLSM (CS-CLPMLSM). Experimental setup for it is made, and propulsion results show that with the help of a new effective coil selection and switching algorithms, the conventional current-based vector control is sufficient to fulfill the position and velocity control of the new PMLSM. The proposed PMLSM is expected to fulfill seamless servo-control of multiple carriers also in process line, such as a new generation of flat panel display manufacturing line.