• 제목/요약/키워드: Controlled transdermal delivery

검색결과 16건 처리시간 0.026초

Controlled Transdermal Delivery of Loxoprofen from an Ethylene-Vinyl Acetate Matrix

  • Ryu, Sang-Rok;Shin, Sang-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권6호
    • /
    • pp.347-354
    • /
    • 2011
  • Repeated oral administration of loxoprofen can induce many side effects such as gastric disturbances and acidosis. Therefore, we considered alternative routes of administration for loxoprofen to avoid such adverse effects. The aim of this study was to develop an ethylene-vinyl acetate (EVA) matrix system containing a permeation enhancer for enhanced transdermal delivery of loxoprofen. The EVA matrix containing loxoprofen was fabricated and the effects of drug concentration, temperature, enhancer and plasticizer on drug release were studied from the loxoprofen-EVA matrix. The solubility of loxoprofen was highest at 40% (v/v) PEG 400. The release rate of drug from drug-EVA matrix increased with increased loading dose and temperature. The release rate was proportional to the square root of loading dose. The activation energy (Ea), which was measured from the slope of log P versus 1000/T, was 5.67 kcal/mol for a 2.0% loaded drug dose from the EVA matrix. Among the plasticizer used, diethyl phthalate showed the highest release rate of loxoprofen. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the greatest enhancing effect. In conclusion, for the enhanced controlled transdermal delivery of loxoprofen, the application of the EVA matrix containing plasticizer and penetration enhancer could be useful in the development of a controlled drug delivery system.

Enhanced controlled transdermal release of quinupraqmine from the ethylene-vinyl acetate

  • Shin, Sang-Chul;Kim, Jin;Oh, In-Joon
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.230.1-230.1
    • /
    • 2003
  • In case of oral application of quinupramine, antidepressants, it may cause adverse effects such as diarrhea, nausea due to transient high blood concentration. Ethylene vinyl acetate (EVA) which is heat-processible, flexible, inexpensive material was used for transdermal drug delivery. The purpose of this study was to develop the new transdermal delivery system of quinupramine using EVA polymer matrix that can provide sustained release and avoid the side effects. The EVA matrix containing quinupramine was prepared by solvent-evaporation method. (omitted)

  • PDF

Enhanced Controlled Transdermal Delivery of Hydrochlorothiazide from an Ethylene-vinyl Acetate Matrix

  • Kim, Dal-Keun;Park, Jung-Chan;Chang, Ik-Hyun;Kang, Chung;Ryu, Sang-Rok;Shin, Sang-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권3호
    • /
    • pp.167-173
    • /
    • 2010
  • Repeated oral administration of hydrochlorothiazide, a loop diuretic, due to transient high blood levels, may cause adverse effects such as gastric disturbance, nausea, high blood sugar, and hyper lipidemia. Transdermal administration could avoid some of these systemic side effects and gastric disorders. We have developed a matrix using ethylene-vinyl acetate (EVA), a heat-processible and flexible material, for transdermal delivery of hydrochlorothiazide. Drug solubility was highest at 40% PEG-400 volume fraction. Drug release increased as concentration increased with a linear relationship between the release rate and the square root of loading dose. Increasing temperature increased drug release from the EVA matrix. The activation energy, measured from the slope of log P versus 1000/T, was 11.9 kcal/mol for a 2.5% loading dose from EVA matrix. Diethyl phthalate had the highest plasticizing effects on the release of hydrochlorothiazide. To increase the skin permeation of hydrochlorothiazide from the EVA matrix, enhancers such as the saturated fatty acids, the unsaturated fatty acids, and the non-ionic surfactants were added to the EVA matrix, and skin permeation was evaluated using a modified Keshary-Chien diffusion cell fitted with intact excised rat skin. Polyoxyethylene 23-lauryl ether showed the highest enhancing effects. In conclusion, transdermal delivery of hydrochlorothiazide could be improved from an EVA matrix containing plasticizer and permeation enhancer.

키토산 매트릭스를 이용한 향균제 경피흡수제형의 제조와 평가 (Preparation and Evaluation of Antibacterial Transdermal Device using Chitosan Matrices)

  • 김선일;나재운
    • 대한화학회지
    • /
    • 제37권5호
    • /
    • pp.527-536
    • /
    • 1993
  • Chitin을 강알칼리로 탈아세틸화시켜 합성한 chitosan을 증류수에 팽윤시킨 다음 글리세린을 가하여 교반하였다. 이 고분자 용액에 약물인 silver sulfadiazine을 가하여 경피흡수용 고분자 matrix을 제조하였다. 이렇게 제조된 고분자 matrix로부터 약물의 방출거동과 고분자 matrix 변수와의 상관관계 등을 조사함으로써 지속적이고 조절된 경피흡수제형으로서의 사용 가능성과 특성을 조사하였다. 고분자 matrix 내의 약물의 함유량과 matrix의 두께가 증가할수록 약물의 방출시간은 더 지연되었다. 그러나 글리세린의 함유량이 증가함에 따라 약물의 방출시간은 오히려 감소하였다. 약물의 함유량, 글리세린의 함유량 및 matrix의 두께가 증가할수록 겉보기 방출속도상수(K)값도 증가하였다.이상과 같이 chitosan은 의약의 방출조절형제제로서 가능성을 나타냈으며, 약물로 사용된 silver sulfadiazine의 방출거동은 Higuchi model에 따른 확산으로 생각되었다.

  • PDF

프로리포솜을 이용한 클렌부테롤의 경피흡수 제제화 (Proliposomal Clenbuterol Patch for Transdermal Delivery)

  • 이영주;정석재;이민화;심창구
    • Journal of Pharmaceutical Investigation
    • /
    • 제27권4호
    • /
    • pp.303-311
    • /
    • 1997
  • Proliposomal patch of clenbuterol, ${\beta}_2-agonist$ bronchodilator, was prepared and its feasibility as a novel transdermal drug delivery system was examined. Proliposomal granules containing clenbuterol was prepared by a standard method using sorbitol and lecithin with (Rx 2) or without cholesterol (Rx 1). The porous structure of sorbitol in the proliposomes was maintained allowing tree flowability of the granules. Following contact with water, the granules were converted probably to liposomes almost completely within several minutes. It indicates that proliposomes may be hydrated, when they are applied on the skin under occlusive condition in vivo, by the sweat to form liposomes. Clenbuterol release from Rx 1 and Rx 2 proliposomes to pH 7.4 isotonic phospate buffer (PBS) across cellulose membrane (mol. wt. cut-off of 12000-14000) was retarded significantly compared with that from the mixture of clenbuterol powder and blank proliposomes. Interestingly, proliposomes prepared with lecithin and cholesterol (i.e., Rx 2 proliposomes) showed much more retarded release of clenbuterol than proliposomes prepared only with lecithin (i.e.. Rx 1 proliposomes), indicating that clenbuterol release from proliposomes can be controlled by the addition of cholesterol to the proliposomes. Proliposomal patches were prepared using PVC film as an occlusive backing sheet, two sides adhesive tape (urethane, 1.45 mm thickness) as a reservoir for proliposome granules and Millipore MF-membrane (0.45 mm pore size) as a drug release-controlling membrane. Rx 1 or Rx 2 proliposomes containing 4.6 mg of clenbuterol were loaded into the reservoir of the patch. Clenbuterol release from the patches to pH 7.4 PBS was determined using USP paddle (50 rpm)-over-disc release method. Clenbuterol release from the proliposomal patches was much more retarded even than from a matrix type clenbuterol patch (Boehringer Ingelheim ltd). Being consistent with clenbuterol release from the proliposomal granules, the release from the patches was highly dependent on the presence of cholesterol in the proliposomes : Patches containing Rx 2 proliposomes showed several fold slower drug release than patches containing Rx 1 proliposomes. When the patch containing Rx 1 proliposomes was applied on to the back of a hair-removed rat, clenbuterol concentration in the rat blood was maintained during 6-72 hrs. Transdermal absorption of clenbuterol from the patch was accelerated when the patch was prehydrated with 50 ml of pH 7.4 PBS before topical application. Above results indicate that sustained transdermal delivery of clenbuterol is feasible using proliposomal patches if the cholesterol content and pore size of the release rate-controlling membrane of patches, for example, are appropriately controlled.

  • PDF

Transdermal Delivery of Ethinylestradiol UsingEthylene-vinyl Acetate Membrane

  • Shin, Sang-Chul;Byun, Soo-Young
    • Journal of Pharmaceutical Investigation
    • /
    • 제25권3호spc1호
    • /
    • pp.53-59
    • /
    • 1995
  • Ethinylestradiol (EE)-containing matrix was fabricated with ethylene-vinyl acetate(EVA) copolymer to control the release of the drug, Effect of addition of PEG 400 as receptor solution, the stripping of skin and Azone pretreatment on skin on the permeation of EE through the excised mouse skin was also studied. The permeation rate of EE through the excised mouse skin was affected by the PEG 400 volume fraction. The Azone pretreatment on skin didn't affect on the steady state flux, however, the lag time was shortened. The permeation rate of EE through the stripped skin was much larger than that through the whole skin. It showed that the stratum corneum acts as a barrier of skin permeation. The fact that there is little difference in EE permeation between the intact skin and the stripped skin with EVA membrane shows the permeation of EE through the mouse skin is mainly controlled by the membrane.

  • PDF

A Study on Transdermal Controlled Drug Delivery Of Soft Hydrogel

  • S. K. Yang;Kim, Y. G.;Lee, C. H.
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1995년도 춘계학술대회
    • /
    • pp.131-131
    • /
    • 1995
  • 제제설계 및 컴퓨터 최적화기법을 응용하여 고형으로 바뀌는 Gel화 시간이 가장 짧은 기본처방을 구하고, Indomethacin을 주 약물로하여 약물방출에 영향을 줄 수 있는 PVA, PEG 및 Ethanol 을 독립변수로, 약물방출속도를 종속변수로 하여 중심 합성계획법에 따라 실험을 행하여 최적처방을 구한다. 최적처방에 의한 Soft Hydrogel 을 제조하여 약물방출속도 및 Rheometer 에 의한 유동특성을 측정하였다.

  • PDF

Quercetin과 Rutin의 피부 흡수 증진을 위한 셀룰로오스 다공성 하이드로젤 제형 개발 (Development of Porous Cellulose-Hydrogel System for Enhanced Transdermal Delivery of Quercetin and Rutin)

  • 이민혜;김수지;박수남
    • 폴리머
    • /
    • 제37권3호
    • /
    • pp.347-355
    • /
    • 2013
  • 본 연구에서는 항산화제인 quercetin과 그 배당체인 rutin의 피부 흡수를 증진시키기 위한 전달체로 다공성 셀룰로오스 하이드로젤을 제조하였고 그 특성을 연구하였다. Quercetin과 rutin을 위한 최적의 하이드로젤을 가교제인 12% epichlorohydrin(ECH)과 2% 셀룰로오스를 반응용액으로 하여 만들었다. 플라보노이드 함유 하이드로젤의 방출 실험에서, quercetin의 방출은 $10{\sim}500{\mu}M$ 농도에서 확산 속도에 영향을 받았으나, rutin의 경우는 비교적 낮은 농도($10{\sim}50{\mu}M$)에서 하이드로젤의 침식에 의한 방출이 지배적이었다. 플라보노이드에 대한 하이드로젤의 포집효율과 방출량은 quercetin보다도 rutin에서 모두 크게 나타났다. 하지만, Franz diffusion cell을 이용한 피부 투과 실험에서 quercetin이 rutin보다 1.2배나 더 큰 피부 투과능을 나타냈다. 플라보노이드 함유 하이드로젤은 대조군인 20% 1,3-butylene glycol phosphate buffer에서보다도 더 큰 경피 투과능을 나타내었다. 이 결과들은 난용성 항산화제인 플라보노이드의 피부 흡수 증진 전달체로서 셀룰로오스 다공성 하이드로젤이 이용 가능성이 있음을 시사한다.

The Effect of Vehicles and Pressure Sensitive Adhesives on the Percutaneous Absorption of Quercetin through the Hairless Mouse Skin

  • Kim, Hye-Won;Gwak, Hye-Sun;Chun, In-Koo
    • Archives of Pharmacal Research
    • /
    • 제27권7호
    • /
    • pp.763-768
    • /
    • 2004
  • To investigate the feasibility of developing a new quercetin transdermal system, a preformulation study was carried out. Therefore, the effects of vehicles and pressure-sensitive adhesives (PSA) on the in vitro permeation of quercetin across dorsal hairless mouse skin were studied. Among vehicles used, propylene glycol monocaprylate (PGMC) and propylene glycol mono-laurate were found to have relatively high permeation flux from solution formulation (i.e., the permeation fluxes were 17.25$\pm$1.96 and 9.60$\pm$3.87 $\mu\textrm{g}$/$\textrm{cm}^2$/h, respectively). The release rate from PSA formulations followed a matrix-controlled diffusion model and was mainly affected by the amount of PSA and drug loaded. The overall permeation fluxes from PSA formulations were less than 0.30 $\mu\textrm{g}$/$\textrm{cm}^2$/h, which were significantly lower compared to those obtained from solution formulations. The lower permeation fluxes may be due to the decrease of solubility and diffusivity of quercetin in the PSA layer, considering the fact that the highest flux of 0.26 $\mu\textrm{g}$/$\textrm{cm}^2$/h was obtained with the addition of 0.2% butylated hydroxyanisole in PGMC-diethyl-ene glycol monoethyl ether co-solvents (80-85 : 15-20, v/v). Taken together, these observations indicate that improvement in the solubility and diffusivity of quercetin is necessary to realize fully the clinically applicable transdermal delivery system for the drug.