• Title/Summary/Keyword: Controlled closing

Search Result 46, Processing Time 0.03 seconds

Output Characteristics of Parallel or Serially Connected Helical Magneto-Cumulative Generators (병렬 또는 직렬로 결합한 나선형 자장압축발전기의 출력특성 분석)

  • Kuk Jeong-Hyeon;Lee Heung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.647-657
    • /
    • 2004
  • Helical magneto-cumulative generator(HMCG)s are very useful devices in suppling pulsed high current to inductance loads. To apply fast high voltage pulses to high impedance loads, high current outputs of HMCGs are required to be conditioned to higher voltages by using various pulse components such as opening/closing switches and pulse transformer. In this paper, stepping with the trends of requirements for ever-increasing energy in pulsed power applications coupling methods is investigated to obtain higher output energy by connecting several HMCGs in series or parallel way. The coil dimension of HMCGs used in series or parallel connections was 50 mm in diameter and 150 mm in length. The coil was fabricated by using enamel-coated copper wire of 1 mm in diameter. The highest energy amplification ratio and peak voltage of load were achieved from the serially connected four-barrel HMCG system. They were 68 and 34 kV, respectively, when the initial energy of 0.36 kJ was supplied into that system with the load of 0.4 μH. Within the tested range of inductance ratio, energy amplification ratio was found to be highly dependent on the inductance ratio of serial- and parallel-connected HMCG systems to load, which to be optimal around 500 was turned out. The experimental results showed that the output energy and voltage of load are controlled by connecting HMCGs in series or parallel.

A Study on Manually and Continuously Variable Impact Force Control Device Development for Hydraulic Breakers (유압브레이커의 수동 무단 타격력 제어기구 개발에 대한 연구)

  • Kang, Young Ky;Jang, Ju Seop
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.46-53
    • /
    • 2020
  • In this paper, the development of a manually and continuously variable impact force control mechanism for hydraulic breakers was studied. Generally, a hydraulic breaker has one or two piston strokes. Hydraulic breakers, which have two strokes, have two valve-switching ports and make short and long piston strokes. The piston stroke valve controls the piston stroke by opening and closing a short stroke-switching port. The short piston stroke mode is used to break soft rock, concrete, or asphalt. This stroke control valve system is not popular for small hydraulic breakers mounted on 1 to 14-ton excavators. To preserve the carrier-like excavator, proper breaking force is needed, and it can be easily controlled by multiple piston stroke control valves. The easiest way to control these breakers is to use several switching ports and valves but they are not easy to install in small hydraulic breakers and are expensive. To use only one switching port and valve, a method can be used to change the open area of the switching port to delay valve switching. This method provides multiple piston strokes.

Simulation of Contaminant Draining Strategy with User Participation in Water Distribution Networks

  • Marlim, Malvin S.;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.146-146
    • /
    • 2021
  • A contamination event occurring in water distribution networks (WDNs) needs to be handled with the appropriate mitigation strategy to protect public health safety and ensure water supply service continuation. Typically the mitigation phase consists of contaminant sensing, public warning, network inspection, and recovery. After the contaminant source has been detected and treated, contaminants still exist in the network, and the contaminated water should be flushed out. The recovery period is critical to remove any lingering contaminant in a rapid and non-detrimental manner. The contaminant flushing can be done in several ways. Conventionally, the opening of hydrants is applied to drain the contaminant out of the system. Relying on advanced information and communication technology (ICT) on WDN management, warning and information can be distributed fast through electronic media. Water utilities can inform their customers to participate in the contaminant flushing by opening and closing their house faucets to drain the contaminated water. The household draining strategy consists of determining sectors and timeslots of the WDN users based on hydraulic simulation. The number of sectors should be controlled to maintain sufficient pressure for faucet draining. The draining timeslot is determined through hydraulic simulation to identify the draining time required for each sector. The effectiveness of the strategy is evaluated using three measurements, such as Wasted Water (WW), Flushing Duration (FD), and Pipe Erosion (PE). The optimal draining strategy (i.e., group and timeslot allocation) in the WDN can be determined by minimizing the measures.

  • PDF

Comparison of finite element analysis of the closing patterns between first and second premolar extraction spaces (상악 제1 및 제2소구치의 발치공간 폐쇄기전에 대한 3차원 유한요소 해석의 비교 연구)

  • Koh, Shin-Ae;Im, Won-Hee;Park, Sun-Hyung;Chun, Youn-Sic
    • The korean journal of orthodontics
    • /
    • v.37 no.6
    • /
    • pp.407-420
    • /
    • 2007
  • The aim of this study was to compare the differences in closing extraction spaces between maxillary first premolar and second premolar extractions using 3-dimensional finite element analysis (FEA). Methods: Maxillary artificial teeth were selected according to Wheeler's dental anatomy. The size and shape of each tooth, bracket and archwire were made from captured real images by a 3D laser scanner and FEA was performed with a 10-noded tetrahedron. A $10^{\circ}$ gable bend was placed behind the bull loop on a $0.017"{\times}0.025"$ archwire. The extraction space was then closed through 12 repeated activating processes for each 2mm of space. Results and Conclusions: The study demonstrated that the retraction of anterior teeth was less for the second premolar extraction than for the first premolar extraction. The anterior teeth showed a controlled tipping movement with slight extrusion, and the posterior teeth showed a mesial-in rotational movement. For the second premolar extraction, buccal movement of posterior teeth was highly increased.

Roof Ventilation Structures and Ridge Vent Effect for Single Span Greenhouses of Arch Shape (아치형 단동온실의 지붕환기구조 및 천창효과)

  • Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • It is difficult to install a ventilation window on the roof of single span greenhouses of arch shape. Investigation on the roof ventilation structures for those greenhouses was conducted. In small greenhouses with spans of 5 to 8 m, circular or chimney type ridge vents made of plastic were employed. In large greenhouses with spans of 12 to 18 m, even span roll-up ridge vents made of steel pipe were employed. The effect of roof ventilation was evaluated by comparative experiments between greenhouse installing ridge vents and having controlled side vents only. Roof ventilation contributed greatly to restraint of temperature rise and maintenance of uniform temperature distribution in greenhouses. And ventilation efficiency was analyzed by experiments on the opening and closing operation of the ridge and side vent. There were no temperature differences according to opening and closing sequence of ventilation window. But for greenhouse temperature control by ventilation, it is desirable to open side vents after ridge vents and to close ridge vents after side vents.

  • PDF

A Study for Finding Optimized Cable Forces of Cable Stayed Bridge (사장교 케이블 최적 장력 보정에 관한 연구)

  • Park, Dae-Yong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.16-20
    • /
    • 2012
  • During construction of the cable-stayed bridge, not only shape of deck and pylon but also cable forces are main factors for geometry control. Especially, geometry control of deck must be controlled for adjusting design value of vertical and lateral alignment as well as closing of key segment. Also, both the deck level error and cable force error occur necessarily during the construction stage in cable stayed bridge. The errors are caused by different of material properties and computer modeling, and construction mistake, and so on. These causes bring about that the forces of cable and the displacement of deck show different tendency from the theoretical values. Therefore, these errors must necessarily be adjusted and can be improved through adjustment of cable length. In this study, a new optimization tool is proposed to adjust the errors of the second Dolsan cable-stayed bridge.

A Development of Intelligent Controller for Phase Control in Main Circuit Breaker (주회로차단기 투입전원 위상제어를 위한 지능형 제어기 개발)

  • Oh, Yong-Kuk;Kim, Jae-Won;Ryu, Joon-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.755-761
    • /
    • 2017
  • In railways powered by AC power, the main circuit breaker (MCB) is used for supplying the electric power to the catenary of the vehicle. Generally, the main circuit breaker is located between the pantograph and the main transformer, and the phase of the power applied to the vehicle changes according to the operation timing of the main circuit breaker. The operation of the main circuit breaker should be actively controlled according to the phase of the power source, since the phase of the power causes unintended transient states in the vehicle's electrical system in the form of an inrush current and surge voltage. However, the MCB has a delay time when it operates which is not constant. Therefore, an intelligent controller is needed to predict the operation delay time and control the opening and closing of the MCB.

The Effect of R&D on High-Tech Product Export Competitiveness: Empirical Evidence from Panel Data of East Asian Economies

  • Alemu, Aye Mengistu
    • STI Policy Review
    • /
    • v.3 no.1
    • /
    • pp.46-62
    • /
    • 2012
  • This study investigates the effects of the two most important indicators of a nation's state of scientific infrastructure: R&D investment and the number of R&D researchers engaged in high-tech product export competitiveness for a panel of 11 countries/economies from East Asia from 1994 to 2010. A GMM panel estimation method was employed to account for the dynamic effect of trade and to control for un-observed country specific effects that may arise due to an inter-country differences and intra-country dynamics. Accordingly, the empirical results reveal that (once controlled for the influence of per capita income) physical capital and infrastructure, a 1% increase in a country's expenditure on the ratio of R&D to GDP may increase high-tech product export performance by approximately $397 million per year. Other factors constant, a 1% increase in the number of R&D researchers is expected to increase the ability to export high-tech products by approximately $67 million. The East Asian development experience demonstrates how latecomers can follow systematic industrialization and join the handful of economies that have come a long way toward closing the knowledge gap with the global technological leaders. However, this does not mean that the policy approaches and overall commitments pursued by each East Asian economy in relation to R&D investment and acquisition of an adequate pool of researchers, and their ultimate achievements in high-tech product export competitiveness were uniform. As a result, there is still a significant variation among countries/economies in terms of performance. This study recommended a number of potential tools and policy instruments that may assist policy makers to foster R&D as an engine to enhance the high-tech product export competitiveness.

A study on application plan of access control requirements in ERMS Standard (ERMS 표준에 나타난 접근통제 요건의 적용방안에 관한 연구)

  • Cheon, Kwon-Ju
    • The Korean Journal of Archival Studies
    • /
    • no.18
    • /
    • pp.179-220
    • /
    • 2008
  • Under the physical records management system, both the records and users could be controlled and secured by closing the door of Archives or using permitted records which is used only approved users. According to the electronic records management system and the concept of service on the basis of users, we have to give up the classical manner. As an alternative, we have to consider the electronic access control system. To accomplish this purpose, functional requirements of ERMS that is issued by UK, EU, U.S and Australia must be compared and analyzed. On the basis of U.K ERMS which is more detailed, 'common access control functional requirements' are arranged. As the access control functional requirements is applied in the records classification scheme, we could find out how the access control is executed in ERMS.

Study on the Shear Characteristics by using the Hot Mechanical Piercing during the Hot Stamping Process (열간 기계적 피어싱을 이용한 핫스탬핑 전단특성 연구)

  • K. J. Park;J. M. Park;J. Y. Kong;J. Y. Kim;S. C. Yoon;J. S. Hyun;Y. D. Jung
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • The hot stamping process is widely used for high strength of vehicle parts, with heating 900 ℃ or higher in a furnace and in-die quenching to achieve strength above 1.5 GPa of the quenchable boron alloyed steel 22MnB5. First of all, the hot stamping process consisted of heating, forming, quenching and trimming. In the trimming process case, the laser method has been conventionally adopted. For laser trimming process, it has the problems pertaining to low productivity and high cost while the hot stamping process, accordingly the trimming process need to investigate the research for alternative method. In order to overcome these issues, many research groups have studied the mechanical trim solution on the hot stamped parts at high temperature. In this study, the mechanical piercing was performed during the hot stamping process at the high temperature for overcome the disadvantages of laser cutting. Also, the process parameters such as piercing time after die closing, clearances of between die and punch were controlled for obtaining the reasonable shear characteristics.