• Title/Summary/Keyword: Control system

Search Result 50,833, Processing Time 0.07 seconds

Advanced Real Time Simulation Platform for Control and Protection Studies of LSIS 80kV 60MW Jeju HVDC System

  • Iwa, Kartiwa;Lee, Kyung-Bin
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.85-86
    • /
    • 2013
  • This paper describes the physical configuration and features of the advanced control and protection devices, and operation control and monitoring system that are connected to a real time simulator for LS Industrial System 80kV 60 MW Jeju HVDC Pilot Project. Highlight of simulation result are provided to demonstrate the control and protection functionality.

  • PDF

Speed Control of DC Motor using Distributed Control System (분산형 제어시스템을 이용한 DC MOTOR 속도 제어)

  • Kim, Seung-Hyun;Jung, Joon-Hong;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.684-686
    • /
    • 2004
  • This paper is concerned with the DC motor speed control using distributed control system. We design CAN nodes which can transmit control and monitoring data through CAN bus and apply these to distributed networked control system. The results of the experiment validate effectiveness of our distributed networked control system.

  • PDF

Development of Power Energy Management System for Ships including Energy Saving of Separated Load Systems (개별 부하 시스템의 에너지 절감을 포함한 선박 전력 에너지 관리 시스템 개발)

  • Kang, Young-Min;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.131-139
    • /
    • 2018
  • Many ship researches have been carried out in connection with the fourth revolution, one of which focuses on EMS(energy management system). The EMS is referred to as systems for managing the energy of ships and include various systems. In this paper, we analyze the energy saving field in ship and propose a ship power energy management system including individual load control systems that can save energy in the engine room. EMS includes individual load control systems of PCS (Pump Control System), ERFCS (Engine Room Fan Control System), LCS (Load Control System), HVACS (Heating, Ventilation, Air conditioning Control System). Proposed EMS primarily conserves energy in the individual load systems of the engine room. Secondly, the integrated monitoring and control system is used to control the power generation system and the power load system to save energy.

Hybrid System Controlled by a $\mu-Synthesis$ Method for a Seismically Excited Cable-Stayed Bridge (지진하중을 받는 사장교를 위한 $\mu$-합성법을 이용한 복합시스템)

  • Park, Kyu-Sik;Jung, Hyung-Jo;Choi, Kang-Min;Lee, Jong-Heon;Lee, In-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.574-577
    • /
    • 2004
  • This paper presents a hybrid system combining lead rubber bearings and hydraulic actuators controlled by a $\mu-synthesis$ method for seismic response control of a cable-stayed bridge. A hybrid system could alleviate some of restrictions and limitations that exist when each system is acting alone because multiple control devices are operating. Therefore, the overall control performance of a hybrid system may be improved compared to each system, however the overall system robustness may be negatively impacted by active device in the hybrid system or active controller may cause instability due to small margins. Therefore, a $\mu-synthesis$ method that guarantees the robust performance is considered to enhance the possibility of real applications of the control system. The performances of the proposed control system are compared with those of passive, active, semiactive control systems and hybrid system controlled by a LQG algorithm. Furthermore, an extensive robust analysis with respect to stiffness and mass matrices perturbation and time delay of actuator is performed. Numerical simulation results show that the performances of the proposed control system are superior to those of passive system and slightly better than those of active and semiactive systems and two hybrid systems show similar control performances. Furthermore, the hybrid system controlled by a f-synthesis method shows the good robustness without loss of control performances. Therefore, the proposed control system could effectively be used to seismically excited cable-stayed bridge which contains many uncertainties.

  • PDF

Train Operation Display and Control Techniques for Communication Based Train Control System (무선통신 기반 열차제어시스템에서의 열차운행 표시 및 제어기법)

  • 최규형
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.545-551
    • /
    • 2004
  • CBTC(Communication Based Train Control) System can improve train operation efficiency by realizing moving block system which makes a continuous train interval control in accordance with the position and speed of train. Adopting radio transmission to make a continuous detection of train position and transmit the control data from the ground to a train, CBTC needs dedicated train operation and control algorithm which should be quite different from the conventional track-circuit-based train control system. This paper provides a train operation display and control algorithm for CBTC system in making train interval control, train route control and train supervision. Signalling pattern diagram is devised to analyze the train interval control mechanism of moving block system, and interlocking logic is devised to represent the train route control mechanism of moving block system. For train supervision, train occupation status on railway are displayed by using the segment which virtually divide the whole railway. The proposed method has been successfully applied to the development of CBTC system for the standardized AGT(automatic guided transit) which is under construction now in Korea, and also can be applied to any other CBTC system.

Integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system

  • Chengkun, Lv;Juntao, Chang;Lei, Dai
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.1
    • /
    • pp.1-18
    • /
    • 2023
  • This paper investigates the integrated control of an air-breathing hypersonic vehicle considering the safety of propulsion system under acceleration. First, the vehicle/engine coupling model that contains a control-oriented vehicle model and a quasi-one-dimensional dual-mode scramjet model is established. Next, the coupling process of the integrated control system is introduced in detail. Based on the coupling model, the integrated control framework is studied and an integrated control system including acceleration command generator, vehicle attitude control loop and engine multivariable control loop is discussed. Then, the effectiveness and superiority of the integrated control system are verified through the comparison of normal case and limiting case of an air-breathing hypersonic scramjet coupling model. Finally, the main results show that under normal acceleration case and limiting acceleration case, the integrated control system can track the altitude and speed of the vehicle extremely well and adjust the angle deflection of elevator to offset the thrust moment to maintain the attitude stability of the vehicle, while assigning the two-stage fuel equivalent ratio to meet the thrust performance and safety margin of the engine. Meanwhile, the high-acceleration requirement of the air-breathing hypersonic vehicle makes the propulsion system operating closer to the extreme dangerous conditions. The above contents demonstrate that considering the propulsion system safety will make integrated control system more real and meaningful.

Integrated Optimal Design of Smart Connective Control System and Connected Buildings (스마트 연결 제어 시스템과 연결 구조물의 통합 최적 설계)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • A smart connective control system was invented recently for coupling control of adjacent buildings. Previous studies on this topic focused on development of control algorithm for the smart connective control system and design method of control device. Usually, a smart control devices are applied to building structures after structural design. However, because structural characteristics of building structure with control devices changes, a iterative design is required for optimal design. To defeat this problem, an integrated optimal design method for a smart connective control system and connected buildings was proposed. For this purpose, an artificial seismic load was generated for control performance evaluation of the smart coupling control system. 20-story and 12-story adjacent buildings were used as example structures and an MR (magnetorheological) damper was used as a smart control device to connect adjacent two buildings. NSGA-II was used for multi-objective integrated optimization of structure-smart control device. Numerical simulation results show the integrated optimal design method proposed in this study can provide various optimal designs for smart connective control system and connected buildings presenting good control performance.

Access Control Mechanism for Industrial Control System Based Smart Contract (스마트 컨트랙트 기반의 산업제어시스템 접근 제어 메커니즘)

  • Cho, Minjeong;Lee, Changhoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.579-588
    • /
    • 2019
  • Industrial control systems consist of various physical devices such as sensors, actuators. Security Infringement such as waterworks facilities Remote Access Infringement and power control systems Infection have been occured by vulnerability of Access Control. Access control to physical devices must be fulfilled with a reliable system. However, Having a single access control system inside company can not guarantee reliability. In addition, when single access control is struggled with error or infringement, access control system is totally unavailable. so system requires a additional access control method or system. In this paper, we proposed access control mechanism for reliable and stable operation using blockchain and smart contract. Proposed Mechanism using trust score to consider resources to be consumed depending on each industrial environment in consideration of the industrial control system where availability is more important than integrity and confidentiality. Unlike other blockchain-based access control system, proposed system is designed for the currently operating industrial control system.

Improvement of Maneuvering Feeling of Human-Mechanical Cooperative System and Its Application to Electric Power Steering System

  • Mukai, Yasuhiko;Ukai, Hiroyuki;Iwasaki, Makoto;Matsui, Nobuyuki;Hayashi, Jiro;Makino, Nobuhiko;Ishikawa, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.728-733
    • /
    • 2003
  • In human-mechanical cooperative systems, a significant issue is to improve the control performance and the maneuvering feeling of human operation. However, since it is not easy to evaluate the feeling of operators numerically, control engineers design controllers only through experience. Thus, in this paper, a new evaluation method for control performance of human-mechanical cooperative system is proposed based on the reserge waveform. Various distortions of waveform represent deteriorations of control performance and maneuvering feeling. In some cases, since there is a tradeoff between the control performance and the maneuvering feeling, it is difficult to compensate for both of them by usual feedback controllers. To overcome this situation, the two degrees of freedom control system is applied to human-mechanical cooperative system. Some numerical simulation results for an electric power steering system are shown to confirm the effectiveness of proposed control design method.

  • PDF

Development of an Educational System and Real Time Nonlinear Control (I) (교육용 시스템 개발과 실시간 비선형 제어(I))

  • 박성욱
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.562-570
    • /
    • 2002
  • The Purpose of this paper is to design and manufacture an educational system in order to demonstrate the causes and effects of electromagnetic induction.'rho educational system described in this study is a "jumping ring apparatus". This system demonstrates the principle of electromagnetic induction, a force from AC sources, Lenz's law of repulsion and transformer. The educational system is composed of a jumping ring apparatus, a sensor array, encoder, A/D converter, D/A converter and nonlinear controller. The educational system is controlled by 586 PC using Turbo C program. The sensor array is composed of 20 optical sensors. The nonlinear controller consists of nonlinear control algorithm and control board included SCR, FET and phase controller. The A/D converter is used to show the height of ring position to analog for an education purpose. The control signal calculated from the nonlinear control of algorithm send control board through 8 bit D/A convertor. Experiment results are given to verify that Proposed nonlinear controller is useful in on line control of the educational system.al system.