• Title/Summary/Keyword: Control panel

Search Result 1,176, Processing Time 0.028 seconds

Optimum Connection Structure for PV Panel Considering Shadow Influence (그림자 영향을 고려한 태양광 패널의 최적 접속 구조)

  • Jeong, Woo-Yong;Kim, Yong-Jung;Kim, Hyosung
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.210-212
    • /
    • 2019
  • 태양광발전에서 PV panel의 출력 전압 및 전류는 제한적이기 때문에, 필요로 하는 전원 조건을 충족시키기 위하여 PV panel을 직병렬로 연결하여 PV array를 구성한다. 이때, PV array에 부분적인 그림자가 발생할 경우 최대발전전력은 PV array의 접속 구조와 블록킹 다이오드 유무에 따라 달라진다. 본 논문에서는 PV panel의 직병렬 접속에 따른 PV array의 6가지의 접속 구조와 블록킹 다이오드 유무를 고려하여, 부분적인 그림자가 발생할 경우 발전전력을 극대화할 수 있는 최적의 접속 구조를 제시하고 시뮬레이션과 실험을 통해 검증하였다.

  • PDF

A Helmholtz Resonator Array Panel for Low Frequency Sound Absorption (저주파수 흡음을 위한 헬름홀쯔 공명기 배열형 패널)

  • Kim, Yang-Hann;Kim, SangRyul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.924-930
    • /
    • 2005
  • Sound absorptive materials have good performance in high frequency range, not at low frequencies. Therefore it has been great challenge to develop a sound absorbing structure that is good at low frequency. We propose to use a Helmholtz resonator array panel for this purpose. A Helmholtz resonator is one of noise control elements widely used in many practical applications. The resonator is a simple structure composed of a rigid-walled cavity with a neck, but it has very high performance at resonance frequency. This paper discusses the sound absorption of Helmholtz resonator array panels at normal and random incidence. First, various experimental results are introduced and studied. Secondly, we theoretically predict the absorptive characteristics of the resonator away panel. The theoretical approach is based on the Fourier analysis for a periodic absorber. We believe that this method can be used to design a panel for low frequency noise control.

Impact response of a novel flat steel-concrete-corrugated steel panel

  • Lu, Jingyi;Wang, Yonghui;Zhai, Ximei;Zhou, Hongyuan
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.277-288
    • /
    • 2022
  • A novel flat steel plate-concrete-corrugated steel plate (FS-C-CS) sandwich panel was proposed for resisting impact load. The failure mode, impact force and displacement response of the FS-C-CS panel under impact loading were studied via drop-weight impact tests. The combined global flexure and local indentation deformation mode of the FS-C-CS panel was observed, and three stages of impact process were identified. Moreover, the effects of corrugated plate height and steel plate thickness on the impact responses of the FS-C-CS panels were quantitatively analysed, and the impact resistant performance of the FS-C-CS panel was found to be generally improved on increasing corrugated plate height and thickness in terms of smaller deformation as well as larger impact force and post-peak mean force. The Finite Element (FE) model of the FS-C-CS panel under impact loading was established to predict its dynamic response and further reveal its failure mode and impact energy dissipation mechanism. The numerical results indicated that the concrete core and corrugated steel plate dissipated the majority of impact energy. In addition, employing end plates and high strength bolts as shear connectors could prevent the slip between steel plates and concrete core and assure the full composite action of the FS-C-CS panel.

The Properties of Flexural Strength and Density of Extrusion Molding Concrete Panel Using Sepiolite (세피올라이트를 이용한 압출성형 콘크리트 패널의 휨강도 및 밀도 특성)

  • Jung, Eun-Hye;Kang, Cheol;Kim, Jae-Won;Lee, Jung-Koo;Choi, Hun-Gug;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.49-52
    • /
    • 2006
  • Extrusion concrete panel is made by extrusion of high viscosity paste. The high viscosity paste is made by mix of cement, silica, reinforced fiber and thickening agent in the dry mixer and wet mixer subsequently, extrusion in the extruder, and curing in the normal steam curer and high pressure steam curer subsequently. To increase a flexural strength of the panel, it is used inorganic fiber as like asbestos. But it was known that the asbestos was harmful to human being lately, in the domestic area it is restricted usage in the construction materials. So, it is demanded the alternative material for asbestos in the extrusion concrete panel. This study is to investigate that the sepiolite is possible to be the alternative of asbestos. The 3 types of sepiolite is applied to the extrusion concrete panel. To investigate the properties of the panel with sepiolite, it is compared the control with asbestos in the flexural strength, the specific density and the spot compressive strength. From the test results, it was found that the panel with sepiolite B is higher than the control with asbestos in the flexural strength and in the density.

  • PDF

Temperature Control for PV Panel Absorbing Heat by Phase Change Material and its Estimation (상변환물질을 활용한 태양광 패널 표면온도 제어효과 및 최적화 시스템)

  • Lee, Hyo-Jin;Chun, Jong-Han
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.10-15
    • /
    • 2010
  • The experimental study was conducted to optimize the system dissipating properly heat from the in-situ solar panel installed on the roof. For this purpose, six 12-Watt panels, which were consisted of the different design conditions such as containing phase change material(PCM), changing the array of the aluminum fin and honeycomb at the back of the panel, were tested. PCM, which had $44^{\circ}C$ melting point, was chosen in this study. In order to enhance absorbing and expelling heatin PCM, profiled aluminum fin was placed either inward oroutward from the panel. Furthermore, Aluminum honeycomb is imbedded in the back container to find if it would improve the thermal conductivity of PCM. During the experiment, there were ranged to $26^{\circ}C\sim32^{\circ}C$ for outdoor temperature and $700W/m^2\sim1000W/m^2$ for irradiance. As a result, the solar panel, combined with honeycomb and outward fins with PCM instead of placing the fins inward, is showing the best performance in terms of controling panel temperature and its efficiency.

Automatic Inspection for LCD Panel Defect (LCD(Liquid Crystal Display) Panel의 결점 검사)

  • Lee Y.J.;Lee J.H.;Ko K.W.;Cho S.Y.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.946-949
    • /
    • 2005
  • This paper deals with the algorithm development that inspects defects such as Bright Defect Dots, Dark Defect Dots, and Line Defect caused by the process of LCD(Liquid Crystal Display). While most of LCD production process is automated, the inspection of LCD panel and its appearance depends on manual process. So, the quality of the inspection is affected by the condition of worker. Especially, the more LCD size increases, the more the worker feels fatigued, which causes the probability of miss judgement. So, the automated inspection is required to manage the consistent quality of the product and reduce the production costs. In this paper, to solve these problems, we developed the imaging processing algorithm to inspect the defects in captured image of LCD. Experimental results reveal that we can recognize various types of defect of LCD with good accuracy and high speed.

  • PDF

Active Structural Acoustical Control of a Smart Panel Using Direct Velocity Feedback (직접속도 피드백을 이용한 지능판의 능동구조음향제어)

  • Stephen J, Elliott;Paolo, Gardonio;Young-Sup, Lee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.1007-1014
    • /
    • 2004
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of $4\;{\times}\;4$ accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output control system. The theoretical and experimental study of sensor-.actuator frequency response function shows that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900 Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15 dB in vibration level and about 8 dB in acoustic power level at the (1,1) mode of the smart panel. It has been also shown that the shaping error of PVDF actuator could limit the stability and performance of the control system.

A Study on the Optimal Voltage for MPPT Obtained by only Surface's Temperature of Solar Cell (태양전지 온도 센싱만을 통한 태양광 발전시스템의 최적 운전전압에 관한 연구)

  • Minwon Park;In-Keun Yi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.269-275
    • /
    • 2004
  • Photovoltaic(PV) system has been studied and watched with keen interest due to a clean and renewable power source. But, the output power of PV system is not only unstable but uncontrollable, because the maximum power point tracking (MPPT) of PV system is still hard with the tracking failure under the sudden fluctuation of irradiance. Authors suggest that the optimal voltage for MPPT be obtained by only solar cell temperature. Having an eye on that the optimal voltage point of solar cell is in proportion to its panel temperature, with operating the power converter whose operating point keeps its input voltage to the optimal voltage imagined by the surface's temperature of PV panel, the maximum power point becomes tenderly possible to be tracked. In order to confirm the availability of the proposed control scheme. And both control methods are simulated not only on the various angle of sampling time of switching control, but also with the real field weather condition. As the results of that, the conversion efficiency between PV panel and converter of the proposed control scheme was much better than that of the power comparison MPPT control, and what is better, the output voltage of PV panel was extremely in stable when the optimal voltage for MPPT is obtained by only solar cell temperature.

Development of Onshore Offshore Tower Elevator with load distribution endless winder and integrated control panel (하중 분산형 엔드리스 와인더와 통합형 제어반을 적용한 육상 해상 풍력타워 승강기 개발)

  • Lee, Sang-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.711-719
    • /
    • 2019
  • At present, wind power is the fastest growing technology in the world. The domestic market depends heavily on imports for wind tower lift. so it manage through the overseas maker. The lift manufacture, establishment and maintenance utility is increasing, localization development of one wind tower lift is necessary with domestic fundamental base technique. In this paper, we will study the components necessary for the development of onshore offshore wind tower elevators, which are currently dependent on total imports, in line with the high growth of the wind market and the enlargement of the wind power generators. First of all, endless winders and cabins, which are the core components of the offshore wind tower lift, were examined for the components that affect the structural safety. Structural analysis was performed on Sheave, which is responsible for most of the lift lifting loads, and Block Stop, a safety device that prevents the cabin from falling in an emergency. The structural suitability was evaluated by comparing with the safety factor. In addition, the on-board control panel combines the control panel of the elevator and the drive motor driving the endless winder for efficient control of the offshore wind tower lift. The addition of features improves ride comfort at departure.