• 제목/요약/키워드: Control of the Direction of Wind

검색결과 164건 처리시간 0.024초

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

아치형 2연동하우스의 풍력계수 분포에 관한 연구 (Distribution of Wind Force Coefficients on the Two-span Arched House)

  • 이석건;이현우
    • 생물환경조절학회지
    • /
    • 제1권2호
    • /
    • pp.142-147
    • /
    • 1992
  • The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on the two-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated using the experimental data. The results obtained are as follows : 1. The variation of the wind force with wind directions on the side walls was the greatest at the upwind edge of the walls. 2. The maximum negative wind force along the length of the roof appeared at the upwind edge at the wind direction of 60$^{\circ}$. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and wind direction of 0$^{\circ}$ and 0.4 in the first house and 0.6 and 30$^{\circ}$ in the second house, respectively. 4. The mean negative wind force on the side walls of the first house at the wind direction of 0$^{\circ}$ was far greater than that of the second house, and the maximum negative wind force on the roof occurred at the wind direction of 30$^{\circ}$. 5. The maximum lift force appeared on the second house at the wind direction of 30$^{\circ}$, but the lift force on the first house was far greater than that on the second house at the wind direction of 0$^{\circ}$. 6. The parts to be considered for the local wind forces were the edges of the walls, and the edges of the x-direction and the width ratio, 0.4 of the y-direction in the roofs.

  • PDF

롤 회전하는 3축 초음파 풍속계를 활용한 풍향 풍속 측정기법(II) (Technique of Measuring Wind Speed and Direction by Using a Roll-rotating Three-Axis Ultrasonic Anemometer (II))

  • 장병희;이승훈;김양원
    • 풍력에너지저널
    • /
    • 제9권4호
    • /
    • pp.9-15
    • /
    • 2018
  • In a previous study, a technique for measuring wind speed and direction by using a roll-rotating three-axis ultrasonic anemometer was proposed and verified by wind tunnel tests. In the tests, instead of a roll sensor, roll angle was trimmed to make no up flow in the transformed wind speeds. Verification was done in point of the residual error of the rotation effect treatment. In this study, roll angle was measured from the roll motor encoder and the transformed wind speed and direction on the test section axis were compared with the ones provided to the test section. As a result, up to yaw $20^{\circ}$ at a wind speed of 12 m/sec or over, the RMS error of wind speed was within the double of the ultrasonic anemometer error. But at yaw $30^{\circ}$, it was over the double of the ultrasonic anemometer error. Regardless of wind speed, at yaw $20^{\circ}$ and $30^{\circ}$, the direction error was within the double of the ultrasonic anemometer error. But at yaw $10^{\circ}$ or less, it was within the error of the ultrasonic anemometer itself. This is a very favorable characteristic to be used for wind turbine yaw control.

Aerodynamic analysis and control mechanism design of cycloidal wind turbine adopting active control of blade motion

  • Hwang, In-Seong;Lee, Yun-Han;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the cycloidal wind turbine, which is a straight blade vertical axis wind turbine using the cycloidal blade system. Cycloidal blade system consists of several blades rotating about an axis in parallel direction. Each blade changes its pitch angle periodically. Cycloidal wind turbine is different from the previous turbines. The wind turbine operates with optimum rotating forces through active control of the blade to change pitch angle and phase angle according to the changes of wind direction and wind speed. Various numerical experiments were conducted to develop a small vertical axis wind turbine of 1 kW class. For this numerical analysis, the rotor system equips four blades consisting of a symmetric airfoil NACA0018 of 1.0m in span, 0.22m in chord and 1.0m in radius. A general purpose commercial CFD program, STAR-CD, was used for numerical analysis. PCL of MSC/PATRAN was used for efficient parametric auto mesh generation. Variables of wind speed, pitch angle, phase angle and rotating speed were set in the numerical experiments. The generated power was obtained according to the various combinations of these variables. Optimal pitch angle and phase angle of cycloidal blade system were obtained according to the change of the wind direction and the wind speed. Based on data obtained from the above analysis, control device was designed. The wind direction and the wind speed were sensed by a wind indicator and an anemometer. Each blades were actuated to optimal performance values by servo motors.

인공신경망 기반의 풍력발전기 발전량 예측에 관한 연구 (Study on the Prediction of wind Power Generation Based on Artificial Neural Network)

  • 김세윤;김성호
    • 제어로봇시스템학회논문지
    • /
    • 제17권11호
    • /
    • pp.1173-1178
    • /
    • 2011
  • The power generated by wind turbines changes rapidly because of the continuous fluctuation of wind speed and direction. It is important for the power industry to have the capability to predict the changing wind power. In this paper, neural network based wind power prediction scheme which uses wind speed and direction is considered. In order to get a better prediction result, compression function which can be applied to the measurement data is introduced. Empirical data obtained from wind farm located in Kunsan is considered to verify the performance of the compression function.

아치형 단동하우스의 풍력계수 분포에 관한 연구 (Distribution of Wind Force Coefficients on the Single-span Arched House)

  • 이석건;이현우
    • 생물환경조절학회지
    • /
    • 제1권1호
    • /
    • pp.28-36
    • /
    • 1992
  • The wind pressure distributions were analyzed to provide fundamental criteria for the structural design on e single-span arched house according to the wind directions through the wind tunnel experiment. In order to investigate the wind force distributions, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated by using the experimental data. The results obtained are as follows: 1. When the wind direction was normal to the wall, the maximum positive wind pressure along the height of the wall occurred approximately at two-thirds of the wall height because of the effects of boundary layer flow. 2. When the wind direction was 30$^{\circ}$ to the wall, the maximum positive wind force occurred at the windward edge of the wall. When the wind direction was parallel to the wall, the maximum negative wind force occurred at the windward edge of the wall. 3. The maximum negative wind force along the width of the roof appeared around the width ratio, 0.4, and that along the length of the roof appeared around the length ratio, 0.5. 4. According to the results of the mean wind force coefficients analysis, the maximum negative wind force occurred on the roof at the wind direction of 30$^{\circ}$. 5. The wind forces at the wind direction of 30$^{\circ}$ instead of 0$^{\circ}$ are recommended in the structural design of supports for a house. 6. To prevent partial damage of a house structure by wind forces, the local wind forces should be considered to the structural design of a house.

  • PDF

개별 블레이드 피치 제어 방식을 이용한 수직축 풍력발전기의 성능 해석 및 시스템 구현 (Aerodynamic Analysis and System Implementation of Vertical Axis Wind Turbine using Individual Blade Pitch Control Method)

  • 정인오;이윤한;황인성;김승조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3347-3352
    • /
    • 2007
  • This paper describes a research for the performance improvement of the straight-bladed vertical axis wind turbine. To improve the performance of VAWT, the individual blade pitch control method is adopted. For the wind turbine, CFD analysis is carried out by changing blade pitch angle according to the change of wind speed and wind direction. By this method, capacity and power efficiency of VAWT are obtained according to the wind speed and rotating of rotor, and could predict the overall performance of VAWT. It was manufactured to verify performance of the experimental system that consists of rotor including four blades and base. Furthermore, torque sensor and power generator were installed. Also, active controller which can change the pitch angle of the individual blade according to the wind speed and direction was used.

  • PDF

아치형 3연동하우스의 풍력계수 분포에 관한 연구 (Distribution of Wind Force Coefficients on the Three-span Arched House)

  • 이현우;이석건
    • 생물환경조절학회지
    • /
    • 제2권1호
    • /
    • pp.46-52
    • /
    • 1993
  • The wind pressure distributions were analyzed through the wind tunnel experiment to provide fundamental criteria for the structural design on the three-span arched house according to the wind directions. In order to investigate the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated from the experimental data. The results obtained are as follows : 1. The variation of the wind force with the wind directions on the side walls was the greatest at the upwind edge of the walls. The change of pressure from the positive to the negative on the side walls occurred at the wind direction of 30$^{\circ}$ in the first house and 60$^{\circ}$ in the third house. 2. The maximum negative wind force along the length of the roof appeared at the length ratio of 0-0.2, when the wind directions were 90$^{\circ}$ in the first house, 60$^{\circ}$ in the second house and 30$^{\circ}$ in the third house. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and the wind direction of 0.4 and 0$^{\circ}$ in the first house, 0.4-0.6 and 30$^{\circ}$ in the second house and 0.6 and 30$^{\circ}$ in the third house, respectively. 4. The maximum mean positive and negative wind forces occurred at the wind direction of 60$^{\circ}$ and 30$^{\circ}$, respectively, on the side walls of the first house, and the maximum mean negative wind force on the roof occurred at the wind direction of 30$^{\circ}$ in third house. 5. The maximum drag and lift forces occurred at the wind direction of 30$^{\circ}$, and the maximum lift force appeared in the third house. 6. The parts to be considered for the local wind forces were the edges of the walls, the edges of the x-direction of the roofs, and the locations of the width ratio of 0.4 of the first and third house and the center of the width of the second house for the y-direction of the roofs.

  • PDF

풍황 계측 타워 설치시 카메라를 사용한 진북 맞추기 기법 (A Technique for Alignment to True North Based on Camera in Meteorological Installation)

  • 유능수;남윤수;이정완
    • 제어로봇시스템학회논문지
    • /
    • 제11권2호
    • /
    • pp.122-126
    • /
    • 2005
  • A technique for alignment to true north is presented based on synchronized measurements of vision image by a camera and output voltage of wind direction sensor. The true wind direction is evaluated by means of image processing techniques with least square sense, and then evaluated true value is compared with measured output voltage of the sensor. The uncertainty analysis about the component error for the proposed method in practical situation is performed. The proposed technique is applied to real meteorological tower (wind measuring tower) at the Daekwanryung test site. In addition, some uncertainty analysis of this method is presented.

풍력 터빈의 요 제어에 따른 하중 및 성능 영향성 평가 (Assessment of Wind Turbine Load and Performance Effects by Yaw Control)

  • 김진;김지언;고장욱;권기영
    • 풍력에너지저널
    • /
    • 제4권1호
    • /
    • pp.46-52
    • /
    • 2013
  • The wind generally includes turbulence characteristics in nature. So the yaw errors between wind turbine direction and wind direction occur due to turbulence fluctuation. The yaw errors affect the fatigue load of wind turbine system and power reduction. The components of turbulence intensity are different from those of each site where the wind turbines are installed. We studied that the fatigue load and power efficiency are improved by controlling yaw motions. In this study, we controlled the averaged yaw error time according to site conditions by turbulence intensity.