• Title/Summary/Keyword: Control element drive mechanism nozzle

Search Result 9, Processing Time 0.017 seconds

Conceptual Design of a Magnetic Jack Type In-Vessel Control Element Drive Mechanism (자석잭 방식 내장형 제어봉구동장치 개념설계)

  • Park, Jinseok;Lee, Myounggoo;Chang, Sanggyoon;Lee, Daehee
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.225-232
    • /
    • 2015
  • The control element drive mechanism (CEDM) is an electro-mechanical device to control reactivity of the nuclear reactor. The conventional CEDM was installed on a nozzle of the reactor vessel closure head as an ex-vessel type. However, there have been demands for an in-vessel CEDM to fundamentally eliminate the rod ejection accident. Conceptual design of the in-vessel CEDM, which was developed based on the existing technology of the ex-vessel CEDM, is introduced in this paper.

Evaluation for Weld Residual Stress and Operating Stress around Weld Region of the CRDM Nozzle in Reactor Vessel Upper Head (원자로 압력용기 상부헤드 CRDM 노즐 용접부의 용접잔류응력 및 운전응력 평가)

  • Lee, Kyoung-Soo;Lee, Sung-Ho;Bae, Hong-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1235-1239
    • /
    • 2012
  • Primary water stress corrosion cracking (PWSCC) has been observed around the weld region of control rod drive mechanism (CRDM) nozzles in nuclear power plants overseas. The weld has a J-shaped groove and it connects the CRDM nozzle with the reactor vessel upper head (RVUH). It is a dissimilar metal weld (DMW), because the CRDM is made of alloy 600 and the RVUH is made of carbon steel. In this study, finite element analysis (FEA) was performed to estimate the stress condition around the weld region. Generally, it is known that a high tensile region is more susceptible to PWSCC. FEA was performed as for the condition of welding, hydrostatic test and normal operation successively to observe how the residual stress changes due to plant condition. The FEA results show that a high tensile stress region is formed around the weld starting point on the inner surface and around the weld stop point on the outer surface.

Root Cause Analysis and Structural Integrity Evaluation for a Crack in a Reactor Vessel Upper Head Penetration Nozzle (원자로 상부헤드 관통노즐 균열에 대한 원인분석 및 건전성 평가)

  • Lee, Kyoung-Soo;Lee, Sung-Ho;Lee, Jeong-Seog;Lee, Jae-Gon;Lee, Seung-Gun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.56-61
    • /
    • 2013
  • This paper presents the results of integrity assessment for the cracks happened in reactor vessel upper head penetration nozzles. The crack morphology for a boat sample from crack area was analyzed through microscope. The stress condition including weld residual stress around crack was analyzed using finite element analysis. From the results of crack morphology and stress condition, the crack was concluded as primary water stress corrosion cracking. The integrity of the cracked nozzle was assessed by the methodology provided in ASME Section XI. According to the assessment results, the remaining life of the cracked nozzle was 1.43 yrs. and the plant decided to repair it.

Effects of Repair Weld of Reactor Pressure Vessel Upper Head Control Rod Drive Mechanism Penetration Nozzle on J-Groove Weldment Using Finite Element Analysis (유한요소법을 이용한 원자로 상부헤드 CRDM 관통노즐 J-Groove 보수용접 영향 분석)

  • Kim, Ju Hee;Yoo, Sam Hyeon;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.637-647
    • /
    • 2014
  • In pressurized water reactors, the upper head of the reactor pressure vessel (RPV) contains numerous control rod drive mechanism (CRDM) nozzles. These nozzles are fabricated by welding after being inserted into the RPV head with a room temperature shrink fit. The tensile residual stresses caused by this welding are a major factor in primary water stress corrosion cracking (PWSCC). Over the last 15 years, the incidences of cracking in alloy 600 CRDM nozzles have increased significantly. These cracks are caused by PWSCC and have been shown to be driven by the welding residual stresses and operational stresses in the weld region. Various measures are being sought to overcome these problems. The defects resulting from the welding process are often the cause of PWSCC acceleration. Therefore, any weld defects found in the RPV manufacturing process are immediately repaired by repair welding. Detailed finite-element simulations for the Korea Nuclear Reactor Pressure Vessel were conducted in order to predict the magnitudes of the repair weld residual stresses in the tube materials.

Evaluation of SPACE Code Prediction Capability for CEDM Nozzle Break Experiment with Safety Injection Failure (안전주입 실패를 동반한 제어봉구동장치 관통부 파단 사고 실험 기반 국내 안전해석코드 SPACE 예측 능력 평가)

  • Nam, Kyung Ho
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.5
    • /
    • pp.80-88
    • /
    • 2022
  • The Korean nuclear industry had developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code, which adopts a two-fluid, three-field model that is comprised of gas, continuous liquid and droplet fields and has the capability to simulate three-dimensional models. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for the accident management plan of a nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification is required for the separate and integral effect experiments. Therefore, the goal of this work is to verify the calculation capability of the SPACE code for multiple failure accidents. For this purpose, an experiment was conducted to simulate a Control Element Drive Mechanism (CEDM) break with a safety injection failure using the ATLAS test facility, which is operated by Korea Atomic Energy Research Institute (KAERI). This experiment focused on the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The results of the overall system transient response using the SPACE code showed similar trends with the experimental results for parameters such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it can be concluded that the SPACE code has sufficient capability to simulate a CEDM break with a safety injection failure accident.

Effect of Normal Operating Condition Analysis Method for Weld Residual Stress of CRDM Nozzle in Reactor Pressure Vessel (원전 정상가동조건 적용 방식이 원자로 압력용기 상부헤드 관통 노즐의 용접 잔류응력에 미치는 영향)

  • Nam, Hyun Suk;Bae, Hong Yeol;Oh, Chang Young;Kim, Ji Soo;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1159-1168
    • /
    • 2013
  • In pressurized water nuclear reactors (PWRs), the reactor pressure vessel (RPV) upper head contains penetration nozzles that use a control rod drive mechanism (CRDM). The penetration nozzle uses J-groove weld geometry. Recently, the occurrence of cracking in alloy 600 CRDM penetration nozzle has increased. This is attributable to primary water stress corrosion cracking (PWSCC). PWSCC is known to be susceptible to the welding residual stress and operational stress. Generally, the tensile residual stress is the main factor contributing to crack growth. Therefore, this study investigates the effect on weld residual stress through different analysis methods for normal operating conditions using finite element analysis. In addition, this study also considers the effect of repeated normal operating condition cycles on the weld residual stress. Based on the analysis result, this paper presents a normal operating condition analysis method.

Effects of Geometry of Reactor Pressure Vessel Upper Head Control Rod Drive Mechanism Penetration Nozzles on J-Groove Weld Residual Stress (원자로 상부헤드 제어봉구동장치 관통노즐 형상이 J-Groove 용접잔류응력에 미치는 영향)

  • Kim, Ju-Hee;Kim, Yun-Jae;Lee, Sung-Ho;Hur, Nam-Young;Bae, Hong-Yeol;Oh, Chang-Young;Kim, Ji-Soo;Park, Heung-Bae;Lee, Seung-Geon;Kim, Jong-Sung;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1337-1345
    • /
    • 2011
  • In pressurized water reactors (PWRs), the reactor pressure vessel (RPV) upper head contains numerous control rod drive mechanism (CRDM) nozzles. In the last 10 years, the incidences of cracking in alloy 600 CRDM nozzles and their associated welds has increased significantly. Several axial and circumferential cracks have been found in CRDM nozzles in European PWRs and U.S. nuclear power plants. These cracks are caused by primary water stress corrosion cracking (PWSCC) and have been shown to be driven by welding residual stresses and operational stresses in the weld region. Therefore, detailed finite-element (FE) simulations for the Korea Nuclear Reactor Pressure Vessel have been conducted in order to predict the magnitudes of the weld residual stresses in the tube materials. In particular, the weld residual stress results are compared in terms for nozzle location, geometry factor$r_o$/t, geometry of fillet, and adjacent nozzle.

Sensitivity Analysis of Finite Element Parameters for Estimating Residual Stress of J-Groove Weld in RPV CRDM Penetration Nozzle (원자로 CRDM 관통노즐 J-Groove 용접부 잔류응력 예측을 위한 유한요소 변수 민감도 해석)

  • Bae, Hong-Yeol;Kim, Ju-Hee;Kim, Yun-Jae;Oh, Chang-Young;Kim, Ji-Soo;Lee, Sung-Ho;Lee, Kyoung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1115-1130
    • /
    • 2012
  • In nuclear power plants, the reactor pressure vessel (RPV) upper head control rod drive mechanism (CRDM) penetration nozzles are fabricated using J-groove weld geometry. Recently, the incidences of cracking in Alloy 600 CRDM nozzles and their associated welds have increased significantly. The cracking mechanism has been attributed to primary water stress corrosion cracking (PWSCC), and it has been shown to be driven by welding residual stresses and operational stresses in the weld region. The weld-induced residual stress is the main factor contributing to crack growth. Therefore, an exact estimation of the residual stress is important for ensuring reliable operation. This study presents the residual stress computation performed for an RPV CRDM penetration nozzle in Korea. Based on two and three dimensional finite element analyses, the effect of welding variables on the residual stress variation is estimated for sensitivity analysis.

Sensitivity Analysis of Nozzle Geometry Variables for Estimating Residual Stress in RPV CRDM Penetration Nozzle (원자로 상부헤드 관통노즐의 잔류응력 예측을 위한 노즐 형상 변수 민감도 연구)

  • Bae, Hong Yeol;Oh, Chang Young;Kim, Yun Jae;Kim, Kwon Hee;Chae, Soo Won;Kim, Ju Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.387-395
    • /
    • 2013
  • Recently, several circumferential cracks were found in the control rod drive mechanism (CRDM) nozzles of U.S. nuclear power plants. According to the accident analyses, coolant leaks were caused by primary water stress corrosion cracking (PWSCC). The tensile residual stresses caused by welding, corrosion sensitive materials, and boric acid solution cause PWSCC. Therefore, an exact estimation of the residual stress is important for reliable operation. In this study, finite element simulations were conducted to investigate the effects of the tube geometry (thickness and radius) on the residual stresses in a J-groove weld for different CRDM tube locations. Two different tube locations were considered (center-hole and steepest side hill tube), and the tube radius and thickness variables ($r_o/t$=2, 3, 4) included two different reference values ($r_o$=51.6, t=16.9mm).