• Title/Summary/Keyword: Control augmentation system

Search Result 104, Processing Time 0.035 seconds

Configuration and Construction for the KASS KRS Site Infrastructure

  • Jang, HyunJin;Jeong, Hwanho;Son, Minhyuk;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.2
    • /
    • pp.139-144
    • /
    • 2021
  • In this paper, we described configuration and construction of infrastructure for the KASS Reference Station (KRS), subsystem of Korea Augmentation Satellite System (KASS). KASS system consists of three subsystems(KRS, Mission Control Center (MCC), KASS Uplink Station (KUS)). One of these subsystems, KRS receives GNSS data for generating range error and integrity verification and sends to MCC. It is needed to antenna facilities for mounting GNSS antenna and shelter for operating KRS and infra equipment(power and network system, lightning and grounding system, fire extinguish) for operating KRS. For this reason, we have established the requirements for KRS infrastructure and constructed infrastructure for KRS to meet the requirements of KRS infrastructure.

Stability Enhancement of a Hybrid Micro-grid System in Grid Fault Condition

  • Ambia, Mir Nahidul;Al-Durra, Ahmed;Caruana, Cedric;Muyeen, S.M.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.225-231
    • /
    • 2013
  • Low voltage ride through capability augmentation of a hybrid micro-grid system is presented in this paper which reflects enhanced reliability in the system. The control scheme involves parallel connected multiple ac-dc bidirectional converters. When the micro-grid system is subjected to a severe voltage dip by any transient fault single power converter may not be able to provide necessary reactive power to overcome the severe voltage dip. This paper discusses the control strategy of additional power converter connected in parallel with main converter to support extra reactive power to withstand the severe voltage dip. During transient fault, when the terminal voltage crosses 90% of its pre-fault value, additional converter comes into operation. With the help of additional power converter, the micro-grid system withstands the severe voltage fulfilling the grid code requirements. This multiple converter scheme provides the micro-grid system the capability of low voltage ride through which makes the system more reliable and stable.

Test Results of Wide-Area Differential Global Positioning System with Combined Use of Precise Positioning Service and Standard Positioning Service Receiver

  • Kim, Kap Jin;Ahn, Jae Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2021
  • Most existing studies on the wide-area differential global positioning system (WADGPS) used standard positioning service (SPS) receivers in their observation reference stations which provide the central control station global positioning system (GPS) measurements to generate augmentation data. In the present study, it is considered to apply a precise positioning service (PPS) receiver to an observation reference station which is located in the threatened jamming area. Therefore, the reference station network consists of a PPS receiver based observation reference station and SPS receiver based observation reference stations. In this case, to maintain correction performance P1C1 differential code bias (DCB) should be compensated. In this paper, P1C1 DCB estimation algorithm was applied to the PPS/WADGPS system and performance test results using measurements in the Korean Peninsula were presented.

Dynamic Model Identification of Quadrotor UAV based on Frequency-Domain Approach (주파수 영역 기반 쿼드로터 무인기 운동 모델 식별)

  • Jung, Sunggoo;Kim, Sung-Yug;Jung, Yeundeuk;Kim, Eung-Tai
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.4
    • /
    • pp.22-29
    • /
    • 2015
  • Quadrotor is widely used in variable application nowadays. Due to its inherent unstable characteristics, control system to augment the stability is essential for quadrotor operation. To design control system and verify its performance through simulation, accurate dynamic model is required. Quadrotor dynamic model is simply compared with conventional rotorcraft such as helicopter. However, the accurate dynamic model of quadrotor is not easy to develop because of the highly correlated aerodynamic effect of each rotor. In this paper, quadrotor dynamic model is identified from the flight data using frequency domain approach. Flight test of quadrotor is performed in closed loop configuration with stability augmentation system included. Frequency sweep input is applied in each of lateral, longitudinal, yaw and heave axis separately. The bare dynamic model is identified from the flight data of quadrotor responses and thrust measurement through Pulse Width Modulation(PWM) data. The frequency responses of identified model match well with those of flight data, and time responses of identified model for doublet input in each axis are also shown to agree with flight data.

Augmentation of Wind Farms Ride Through by DFIG-based Variable Speed Wind Generators

  • Okedu, K.E.;Muyeen, S.M.;Takahashi, R.;Tamura, J.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.1
    • /
    • pp.104-113
    • /
    • 2012
  • Wind farm grid codes require wind generators to ride through voltage sags, which means that normal power production should be re-initiated once the nominal grid voltage has been recovered. Doubly Fed Induction Generator (DFIG) based wind farm is gaining popularity these days because of its inherent advantages like variable speed operation and independent controllability of active and reactive power over conventional Induction Generator (IG). This paper proposes a new control strategy using DFIGs for stabilizing a wind farm composed of DFIGs and IGs. Simulation analysis by using PSCAD/EMTDC shows that the DFIGs can effectively stabilize the IGs and hence the entire wind farm through the proposed control scheme by providing sufficient reactive power to the system.

Design of a Boiler-Turbine Control System Using a Modified LQG/LTR Method (개선된 LQG/LTR방법에 의한 보일러-터빈제어 시스템의 설계)

  • 권욱현;김상우;박부견;김은기
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.199-209
    • /
    • 1990
  • In this paper, a multivariable robust controller for a boiler-burbine system is designed by using a modified LQG/LTR method. From the known nonlinear dynamic model, a linearized model is obtained with the saturations at both input magnitude and input varying rate. The modeling error is analyzed at various operation points. A new dynamics augmentation method in the LQG/LTR method is suggested which can be applied to LQG/LTR method to reject the input and output disturbances and to follow reference inputs under modeling errors. The good performance of the designed controller is shown by simulations in various conditions.

  • PDF

Measurement Time-Delay Error Compensation For Transfer Alignment

  • Lim, You-Chol;Song, Ki-Won;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.486-486
    • /
    • 2000
  • This paper is concerned with a transfer alignment method for the SDINS(StrapDown Inertial Navigation System) under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Analysis of the Static and Dynamic Stability Properties of the Unmaned Airship

  • Lee, Hae Chang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.82-94
    • /
    • 2001
  • The purpose of this paper is to analyze the static and dynamic stability-of the unmanned airship under development ; the target airship's over-all length of hull is 50m and the maximum diameter is 12.5m. For the analysis, the dynamic model of an airship was defined and both the nonlinear and linear dynamic equations of motion were derived. Two different configuration models (KA002Y and KA003Y) of the airship were used for the target model of the static stability analysis and the dynamic stability analysis. From the result of analyses, though the airship is unstable in static stability, dynamic characteristics of the airship can provide the stable dynamic stability. All of the results, airship models and dynamic flight equations will be an important basement and basic information for the next step of developing the automatic flight control system(AFCS) and the stability augmentation system(SAS) for the unmanned airship as well as for the stratospheric airship in the future.

  • PDF

Neural Networks Based Adaptive Flight Controller Design and Handling Quality Evaluation for Tiltrotor Aircraft (신경회로망을 이용한 틸트로터 항공기의 적응 비행제어기 설계 및 비행성 평가)

  • Lee, Ki Young;Kim, Byoung Soo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • An application of adaptive flight controller is required for the non-linear and high uncertain system that configuration of tiltrotor aircraft is dramatically changed from rotary wing mode to fixed wing mode. In this paper, the applicable adaptive controller for the tiltrotor aircraft was designed using Neural Networks and DMI (Dynamic Model Inversion). The performance of the SCAS (Stability and Control Augmentation System) was simulated against manned military specification, using the fullscale model of 'Smart UAV(Unmanned Aerial Vehicle)' developed by Korea Aerospace Research Institute. And Neural Networks based adaptive controller was verified through its whole operating envelope using the established HQ (Handling Quality) criteria.

Regulation of Blood Glucose Homeostasis during Prolonged Exercise

  • Suh, Sang-Hoon;Paik, Il-Young;Jacobs, Kevin A.
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.272-279
    • /
    • 2007
  • The maintenance of normal blood glucose levels at rest and during exercise is critical. The maintenance of blood glucose homeostasis depends on the coordination and integration of several physiological systems, including the sympathetic nervous system and the endocrine system. During prolonged exercise increased demand for glucose by contracting muscle causes to increase glucose uptake to working skeletal muscle. Increase in glucose uptake by working skeletal muscle during prolonged exercise is due to an increase in the translocation of insulin and contraction sensitive glucose transporter-4 (GLUT4) proteins to the plasma membrane. However, normal blood glucose level can be maintained by the augmentation of glucose production and release through the stimulation of liver glycogen breakdown, and the stimulation of the synthesis of glucose from other substances, and by the mobilization of other fuels that may serve as alternatives. Both feedback and feedforward mechanisms allow glycemia to be controlled during exercise. This review focuses on factors that control blood glucose homeostasis during prolonged exercise.