• Title/Summary/Keyword: Control and response characteristics

Search Result 1,484, Processing Time 0.034 seconds

Effect of Dietary Fermented Garlic Solution on Performance, Egg Quality and Blood Composition in Finishing Period of Laying Hens (마늘발효액의 첨가 급여가 산란계의 산란말기 생산성, 계란 품질 및 혈액성상에 미치는 영향)

  • Lim, Chun Ik;Kang, Chang Won;Chun, Hyeon Soo;Choi, Ho Sung;Ryu, Kyeong Seon
    • Korean Journal of Poultry Science
    • /
    • v.45 no.3
    • /
    • pp.201-207
    • /
    • 2018
  • An experiment was conducted to investigate the effect of fermented garlic solution (FGS) on the performance, egg quality and blood profiles of laying hens in the finishing period. In total, 432 Lohmann Brown hens aged 79 weeks were equally distributed into four dietary treatments with six replicate. Hens were fed the basal diet containing 2,750 kcal/kg of ME and 16% of CP, which was supplemented with either 0% (control), 0.05%, 0.10% and 0.20% FGS from 79 to 83 weeks old. Laying performance, egg quality, yolk fatty acids and serum characteristics were analyzed at the end of experiment. Egg production and feed conversion was numerically improved in FGS supplementation treatments compared to those in the control, but were not statistically different. The albumen height and Haugh unit showed significant increase (P<0.05) in the FGS supplementation groups. The concentration of saturated fatty acid decreased in the yolks of birds fed FGS (P<0.01), whereas the unsaturated fatty acid (UFA) and mono-UFA contents were significantly higher (P<0.01) in those treatments than in the control. Significantly lower natural fat and cholesterol in serum were observed in birds fed the 0.20% FGS supplementation diet (P<0.01). However, the high-density lipoprotein (HDL) cholesterol increased in both the 0.10% and 0.20% FGS supplementation groups. In addition, interleukin-2 mRNA and CD4+/CD8+ level in serum which were cellular immunity indicators showed statistical differences (P<0.01) among treatments and a higher concentration in the 0.10% and 0.20% FGS groups than in the control. Thus, it can be concluded that dietary supplementation of FGS improved egg quality and stimulated immune response in mature laying hens.

Behaviour of steel-fibre-reinforced concrete beams under high-rate loading

  • Behinaein, Pegah;Cotsovos, Demetrios M.;Abbas, Ali A.
    • Computers and Concrete
    • /
    • v.22 no.3
    • /
    • pp.337-353
    • /
    • 2018
  • The present study focuses on examining the structural behaviour of steel-fibre-reinforced concrete (SFRC) beams under high rates of loading largely associated with impact problems. Fibres are added to the concrete mix to enhance ductility and energy absorption, which is important for impact-resistant design. A simple, yet practical non-linear finite-element analysis (NLFEA) model was used in the present study. Experimental static and impact tests were also carried out on beams spanning 1.3 meter with weights dropped from heights of 1.5 m and 2.5 m, respectively. The numerical model realistically describes the fully-brittle tensile behaviour of plain concrete as well as the contribution of steel fibres to the post-cracking response (the latter was allowed for by conveniently adjusting the constitutive relations for plain concrete, mainly in uniaxial tension). Suitable material relations (describing compression, tension and shear) were selected for SFRC and incorporated into ABAQUS software Brittle Cracking concrete model. A more complex model (i.e., the Damaged Plasticity concrete model in ABAQUS) was also considered and it was found that the seemingly simple (but fundamental) Brittle Cracking model yielded reliable results. Published data obtained from drop-weight experimental tests on RC and SFRC beams indicates that there is an increase in the maximum load recorded (compared to the corresponding static one) and a reduction in the portion of the beam span reacting to the impact load. However, there is considerable scatter and the specimens were often tested to complete destruction and thus yielding post-failure characteristics of little design value and making it difficult to pinpoint the actual load-carrying capacity and identify the associated true ultimate limit state (ULS). To address this, dynamic NLFEA was employed and the impact load applied was reduced gradually and applied in pulses to pinpoint the actual failure point. Different case studies were considered covering impact loading responses at both the material and structural levels as well as comparisons between RC and SFRC specimens. Steel fibres were found to increase the load-carrying capacity and deformability by offering better control over the cracking process concrete undergoes and allowing the impact energy to be absorbed more effectively compared to conventional RC members. This is useful for impact-resistant design of SFRC beams.

BONE RESPONSE OF THREE DIFFERENT SURFACE IMPLANTS : HISTOMORPHOMETRIC, PERIO TEST VALUE AND RESONANCE FREQUENCY ANALYSIS IN BEAGLE DOGS

  • Choi, Joon-Eon;Suh, Kyu-Won;Lee, In-Ku;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.362-374
    • /
    • 2007
  • Statement of problem. The intial stability for osseointegration of implant has been an interesting factor. Especially, in the case of poor bone quality or immediately loaded implant, various strategies have been developed focusing on the surface of materials to improve implant fixation to bone. The microscopic properties of implant surfaces play a major role in the osseous healing of dental implants. Purpose. The aims of this study are to perform a histologic and histomorphometric comparison of the healing characteristics of three different surfaces and the comparison of resonance frequency analysis (RFA) values measured by $Osstell^{TM}$ and perio-test values (PTV) measured by Periotest. Material and methods. A total of 24 screw titanium implants (Dentium Co., Seoul, Korea) with 6mm in length and 3.4mm in diameter, were placed in the mandible of 4 beagle dogs. Implants were divided into three groups following the surface treatment methods: Group I is machined(control group). Group II is anodically oxidized. Group III is coated 500nm in thickness with hydroxyapatite(HA) by ion beam assisted deposition(IBAD) on the anodized oxidization. Bone blocks from 2 dogs were caught after 3 weeks of covered healing and another blocks from 2 dogs after 6 weeks. RFA values and PTV were measured right after insertion and at 3 and 6weeks. Histomorphometric analysis was made with Kappa Image Base System to calculate bone-to-implant contact (BIC) and bone area inside the threads. Pearson's correlation analyses were performed to evaluate the correlation between RFA and PTV, BIC and bone area ratio of three different surfaces at 3 and 6 weeks. Results. 1) In all surface treatment methods, the RFA values decreased and the PTV values increased until 6 weeks in comparison to initial values. 2) At 3 weeks, no significant difference was found from bone-to-implant contact ratio and bone area ratio of three different surface treatment methods(P>0.05). However, at 6 weeks, different surface treatment methods showed significantly different bone-toimplant contact ratio and bone area ratio(P<0.05). 3) In the implants with the IBAD on the anodic oxidization, significant difference was found between the 3 weeks and the 6 weeks bone area ratio(P<0.05). 4) Correlation was found between the RFA values and the bone area ratio at 3 and 6 weeks with significant difference(P<0.05). Conclusions. These results indicate that the implants with the IBAD on the anodic oxidization may have a high influence on the initial stability of implant.

Causes of Weakening Tree Vigor of Pinus thunbergii in Hanbando Coastal Forest in Shinangun, Jeollanamdo Province (전남 신안군 한반도해송숲의 곰솔 수세약화 원인 분석)

  • Kim, Sun-Hwa;Park, Seo-Gon
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.4
    • /
    • pp.398-407
    • /
    • 2021
  • This study intended to identify causes of poor tree vigor in the Hanbando coastal forest by investigating its geographical environment, climate condition, soil physicochemical characteristics, and growth condition of Pinus thunbergii. It divided the forest into an area with poor tree vigor or dead standing trees and a control area with good tree vigor and examined them separately. The survey showed that stand density was significantly higher in the area with poor tree vigor. In contrast, the crown width in the area with good tree vigor was wider. The number of dead standing trees and the stand density showed a negative correlation. The stand density and diameter at breast height (DBH), tree height, crown height, and crown width also showed a negative correlation. The result indicated that, as the tree's stand density increases, the crowns of individual trees overlapped and the lower branches died. Then crown height and crown width decreased, and the number of leaves and photosynthesis was reduced, leading to lower tree height and weaker growth of breast diameter. As a result, tree vigor weakened, and combined with environmental pressures from the lack of moisture and nutrients in coastal soil and salty wind, P. thunbergii in coastal areas is expected to die massively. Although the causes of dead standing trees and poor tree vigor of P. thunbergii in the Hanbando coastal forest are complicated, poor management of adequate tree density in response to the growth of P. thunbergii is the primary cause. The secondary cause is external environmental pressures, including unfavorable soil conditions and salty and strong wind that obstruct the growth of P. thunbergii.

A Study on Real-Time Monitoring for Moisture Measurement of Organic Samples inside a Drying Oven using Arduino Based on Open-Source (오픈 소스 기반의 아두이노를 이용한 건조기 내 유기 시료의 실시간 수분측정 모니터링에 관한 연구)

  • Kim, Jeong-hun
    • Journal of Venture Innovation
    • /
    • v.5 no.2
    • /
    • pp.85-99
    • /
    • 2022
  • Dryers becoming commercially available for experimental and industrial use are classified to general drying oven, hot-air dryer, vacuum dryer, freezing dryer, etc. and kinds of them are various from the function, size and volume, etc. But the moisture measurement is not applied although it is important factor for the quality control and the performance improvement of products, and then now is very passive because the weight is weighed arbitrarily after dry-end. Generally the method for measuring moisture is divided by a direct measurement method and a indirect measurement method, and the former such as the change of weight or volume on the front and rear of separation of moisture, etc. is mainly used. Relatively a indirect measurement is very limited to apply due to utilize measurement apparatuses using temperature conductivity and micro-wave etc. In this research, we easily designed the moisture measurement system using the open-source based Arduino, and monitored moisture fluctuations and weight profiles in the real-time without the effect of external environment. Concretely the temperature-humidity and load cell sensors were packaged into a drying oven and the various change values were measured, and their sensors capable to operate 60℃ and 80℃ were selected to suitable for the moisture sensitive materials and the food dry. And also the performance safety using the organic samples of banana, pear, sawdust could be secured because the changes of evaporation rate as the dry time and temperature, and the measurement values of load cell appeared stable response characteristics through repeated experiments. Hereafter we judge that the reliability can be improved increasingly through the expansion of temperature-humidity range and the comparative analysis with CFD(Computational Fluid Dynamics) program.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Comparative Study on Osseointegration of Calcium Metaphosphate (CMP) Coated Implant to RBM Implant in the Femur of Rabbits (가토의 대퇴부에 Calcium Metaphosphate로 코팅된 임플란트 매식후 골유착에 관한 비교 연구)

  • Kang, Young-Joo;Kim, Ki-Hyun;Lee, Jae-Yeol;Lee, Ju-Min;Ahn, Sang-Wook;Song, Jin-Woo;Jung, Eu-Gene;Shin, Sang-Hun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.6
    • /
    • pp.511-520
    • /
    • 2010
  • Purpose: This study was conducted in order to compare the efficacy of osseointegration of three different calcium metaphosphate (CMP) coated implants in the rabbit's femur. Materials and Methods: Twenty four rabbits and three different type of CMP coated implants and RBM implants were used in this study. The animals were divided into 4 groups on the basis of implant surface characteristics. Two implants were installed into the condyle of femur of each rabbits. The animals were sacrificed at 2 and 4 weeks after installation. The undecalcified specimens were prepared for histological, radiological examination and histomorphometric analysis of implant-bone contact ratios (BIC) and bone area ratio (BA). Results: Two implants were failed to osseointegrate and implant success rate was 95.2%. There were not any significant inflammatory response in all groups. Fluorescent image at 4 weeks shows that remodeling is slower in RBM group than CMP group. CMP III showed more active remodeling than CMP I, II. In histomorphologic analysis, BIC ratio at 2 weeks was lower than 4 weeks. Conclusion: The results suggest that the ratios of CMP coated implants were higher than that of RBM control group but there is no significantly difference between RBM group and CMP group. In conclusion, CMP coated implant had more clinical availability than RBM implants.

Evaluation of Cold Tolerance in Rice Cultivars by the Characteristics Related to Chilling Injury I. Fatty Acid Composition of Phospholipid and Chilling Injury of Seedlings (수도(水稻) 품종(品種)의 냉해관련인자(冷害關聯因子) 특성(特性)에 의(依)한 내냉성(耐冷性) 평가(評價) I. 묘(苗)에 인지질(燐脂質)의 지방산(脂肪酸) 조성(組成)과 내냉성(耐冷性))

  • Seok, Soon-Jong;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 1991
  • Composition and unsaturation ratio of fatty acids composing phospholipid which is the main constituent of biological membranes are known to be related to the response of plant to cold stress. In order to investigate a relationship between fatty acid unsaturation ratio of phospholipid and the range of cold tolerance of rice cultivars obtained in the field experiment, the lipid from the leaves of 32 rice cultivars were isolated and the fatty acid composition of phospholipid was determined by gas chromatography. In this experiment, composition and unsaturation ratio of fatty acids composing phopholipid on rice plants grown under natural condition and treated with chilling temperature were compared with the cold tolerance in the field for rice cultivars. The results obtained were summarized as follows ; 1. The phospholipids isolated from the leaves of 32 rice cultivars both grown under natural condition and chilling treatment contained palmitic, linoleic and linolenic acid as major components and palmitoleic, stearic and oleic acid as minor components. 2. The content of palmitic acid, a saturated fatty acid, was reduced in rice seedlings subjected to chilling treatment for 3 days at $15^{\circ}C$, and contents of linoleic and linolenic acid, unsaturated fatty acids, were increased. 3. The unsaturation ratio of fatty acid was increased by chilling treatment, and was high in cold-tolerant cultivars but low in cold-susceptible cultivars and the results were correlated with the range of cold tolerance investigated in the field. 4. The content of palmitic acids among fatty acids composing phospholipid was reduced and that of linolenic acid was increased by hardening treatment. 5. The unsaturation ratio of fatty acid was increased 18~24% by hardening treatment compared to control.

  • PDF

Application of a Geographically Weighted Poisson Regression Analysis to Explore Spatial Varying Relationship Between Highly Pathogenic Avian Influenza Incidence and Associated Determinants (공간가중 포아송 회귀모형을 이용한 고병원성 조류인플루엔자 발생에 영향을 미치는 결정인자의 공간이질성 분석)

  • Choi, Sung-Hyun;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • In South Korea, six large outbreaks of highly pathogenic avian influenza (HPAI) have occurred since the first confirmation in 2003 from chickens. For the past 15 years, HPAI outbreaks have become an annual phenomenon throughout the country and has extended to wider regions, across rural and urban environments. An understanding of the spatial epidemiology of HPAI occurrence is essential in assessing and managing the risk of the infection; however, local spatial variations of relationship between HPAI incidences in Korea and related risk factors have rarely been derived. This study examined whether spatial heterogeneity exists in this relationship, using a geographically weighted Poisson regression (GWPR) model. The outcome variable was the number of HPAI-positive farms at 252 Si-Gun-Gu (administrative boundaries in Korea) level notified to government authority during the period from January 2014 to April 2016. This response variable was regressed to a set of sociodemographic and topographic predictors, including the number of wild birds infected with HPAI virus, the number of wintering birds and their species migrated into Korea, the movement frequency of vehicles carrying animals, the volume of manure treated per day, the number of livestock farms, and mean elevation. Both global and local modeling techniques were employed to fit the model. From 2014 to 2016, a total of 403 HPAI-positive farms were reported with high incidence especially in western coastal regions, ranging from 0 to 74. The results of this study show that local model (adjusted R-square = 0.801, AIC = 954.5) has great advantages over corresponding global model (adjusted R-square = 0.408, AIC = 2323.1) in terms of model fitting and performance. The relationship between HPAI incidence in Korea and seven predictors under consideration were significantly spatially non-stationary, contrary to assumptions in the global model. The comparison between global Poisson and GWPR results indicated that a place-specific spatial analysis not only fit the data better, but also provided insights into understanding the non-stationarity of the associations between the HPAI and associated determinants. We demonstrated that an empirically derived GWPR model has the potential to serve as a useful tool for assessing spatially varying characteristics of HPAI incidences for a given local area and predicting the risk area of HPAI occurrence. Considering the prominent burden of HPAI this study provides more insights into spatial targeting of enhanced surveillance and control strategies in high-risk regions against HPAI outbreaks.

Numerical Modeling of Flow Characteristics within the Hyporheic Zones in a Pool-riffle Sequences (여울-소 구조에서 지표수-지하수 혼합대의 흐름 특성 분석에 관한 수치모의 연구)

  • Lee, Du-Han;Kim, Young-Joo;Lee, Sam-Hee
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.75-87
    • /
    • 2012
  • Hyporheic zone is a region beneath and alongside a stream, river, or lake bed, where there is mixing of shallow groundwater and surfacewater. Hyporheic exchange controls a variety of physical, biogeochemical and thermal processes, and provides unique ecotones in a aquatic ecosystem. Field and experimental observations, and modeling studies indicate that hyporheic exchange is mainly in response to pressure gradients driven by the geomorphological features of stream beds. In the reach scale of a stream, pool-riffle structures dominate the exchange patterns. Flow over a pool-riffle sequence develops recirculation zones and stagnation points, and this flow structures make irregular pressure gradient which is driving force of the hyporheic exchange. In this study, 3 D hydro-dynamic model solves the Reynolds-averaged Navier-Stokes equations for the surface water and Darcy's Law and the continuity equation for ground water. The two sets of equations are coupled via the pressure distribution along the interface. Simulation results show that recirculation zones and stagnation points in the pool-riffle structures dominantly control the upwelling and downwelling patterns. With decrease of recirculation zones, length of donwelling zone formed in front of riffles is reduced and position of maximum downwelling point moves downward. The numerical simulation could successfully predict the behavior of hyporheic exchange and contribute the field study, river management and restoration.