• Title/Summary/Keyword: Control account

Search Result 1,249, Processing Time 0.03 seconds

Hybrid I-PD control for pneumatic cylinders with fuzzy theory

  • Inohana, Kenichiro;Fujiwara, Atsushi;Ishida, Yoshihisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.193-196
    • /
    • 1996
  • A pneumatic cylinder has been used in the production facilities of various industries. However, it is difficult to achieve deciding the precise position of the piston rod, due to the nonlinear properties arising from the air compression and the friction. In recent years, the fuzzy control algorithm has been frequently applied to various kinds of systems on account of its simple algorithm, good adaptability to complex or nonlinear systems and so on. On the other hand, the PID or I-PD control has been used in many engineering fields because of the excellent performance. However, it is known that each one of them has disadvantages. In this paper, we propose a hybrid control which is strived to obtain the advantages of each other. It is shown that the proposed hybrid control performs better than the conventional I-PD control through the experimental results.

  • PDF

Compliant control of a flexible manipulator featuring piezoactuator (압전작동기를 갖는 유연매니퓰레이터의 컴플라이언트 제어)

  • 김형규;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.722-725
    • /
    • 1996
  • This paper presents a new control strategy for the position and force control of a flexible manipulator. The governing equation of motion of a two-link flexible manipulator which features a piezoceramic actuator is derived via Hamilton's principle. The control torque of the motor to command desired position and force is determined by a sliding mode controller. This controller is formulated to take account of parameter uncertainties and external disturbances. During the commanded motion, undesirable oscillation is actively suppressed by applying a feedback control voltage to the piezoceramic actuator. Consequently, an accurate compliant motion control of the flexible manipulator is achieved. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

The Control of Large Scale System by Sliding Mode (슬라이딩 모드를 이용한 대규모 계통의 제어)

  • Chun, Hee-Young;Park, Gwi-Tae;Kuo, Chun Ping;Kim, Dong-Sik;Im, Hyeong-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.190-194
    • /
    • 1987
  • This paper describes a new method for control of large-scale system by sliding mode. The concepts of control to large-scale system on the basis of VSS(Variable Structure System) control theory are used to decompose a large control problem into a two-level algorithm such that each subsystem is stabilized with local discontinuous controllers and higher level corrective control is designed to take into account the effect of interaction among the subsystems. In this paper, we show that each subsystem is controlled with repect to local continuous and higher level corrective control. This algorithm can be easily applied to multi-variable control system and obtained a continuous control in comparison With variable structure control systems. Two numerical examples are discussed as illustrations.

  • PDF

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

Supervisory control of reheating furnace

  • Kim, Young-Il;Min, Kwang-Gi;Nam, In-Sik;Chang, Kun-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.538-541
    • /
    • 1995
  • In steel works, reheating furnace is an essential part of a rod mill plant and it treats various types of billets continuously. Although getting an optimal setting for a single billet is simple, control setting for whole groups of billets is a difficult task. In this work, we studied a detail mathematical model and optimal control setting of reheating furnace. As the mathematical model of each billet is a partial differential equation, on-line control is almost impossible for the whole billets charged into the furnace. Therefore, we tried to provide a guideline for optimal setting value of the roof(index) temperature for the target billets which account for about 20% of the charged billets.

  • PDF

Comparison of PID and Feedback Linearization Control for Magnetic Levitation System (자기부상 시스템의 PID 제어와 Feedback Linearization 제어와의 성능비교)

  • 박종석;김동환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.263-263
    • /
    • 2000
  • Electromagnetic Suspension(EMS) System produces no noise, friction and heat through non-contacting operation Therefore, the applicable device using EMS system has a lot of attraction in case of the high-speed and non-contacting transmission EMS with nonlinear properties requires a precise airgap position control and stable kinematics characteristics under the disturbances, In this study, the nonlinear system was linearized by a Nonlinear Feedback Lineariztion(NFL) method. The NFL method requires that the modelling should be exact, and the state variables should be measured and a rapidly operating controller be necessary on account of a heavy data calculating In the experiments. the ideal control characteristics of the NFL was acquired through simulation at first. then the characteristics of the actual system were compared with those of simulation. In addition, the results by NFL were examined and analysed considering the characteristics of the PID control. The Control by NFL shows much stable control characteristics than the PID control. Whereas, the steady state errors occur for various disturbances. hence a robust control design is remained for a further study.

  • PDF

Roll Motion Control of a Passenger Vehicle Using Hybrid Control (하이브리드 제어 기법에 의한 승용 차량의 롤 제어)

  • Kim, Hyo-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.22-28
    • /
    • 2011
  • This paper presents an active roll motion control of a passenger vehicle. The roll controller is designed in the framework of $H_{\infty}$ control scheme based on the 3 DOF vehicle model taking into consideration parameter variations, which affect the roll dynamics, and unmodeled high frequency dynamics for robustness and performance. In order to investigate the feasibility of the active roll control system in a car, its performance is evaluated by simulation in a full vehicle model with nonlinear tire characteristics under various operating conditions. Finally, in order to enhance the performance in a transient region taking into account the limited bandwidth of the actuating module, a hybrid control strategy is presented.

Actuator multiple control method for greenhouse environment control system (온실 환경 제어시스템을 위한 액추에이터 복합 제어 방법)

  • Son, Kyo-Hoon;Park, Dae-Heon;Kim, Se-Han;Kim, Jae-Hyung;Jeung, Eun-Tae
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.2
    • /
    • pp.39-45
    • /
    • 2012
  • In recent years the USN(Ubiquitous Sensor Networks) technology has been applied in the greenhouse in order to control temperature and humidity automatically. In this paper, we proposed a control algorithm using feedback linearization techniques based on a mathematical model for temperature and humidity environment. Especially, Control algorithm is presented to the operation of the ventilator affecting on the temperature and humidity system at the same time. The System has been designed taking into account the disturbance(External temperature, soil temperature, external humidity, solar radiation and wind). In conclusion, I will present a way to control multiple actuator through simulations. The proposed control algorithm is validated using the Matlab/Simulink tools.

  • PDF

Sliding Mode Attitude Control for Momentum-Biased Spacecraft

  • Bang, Hyo-Choong;Loh, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.13-23
    • /
    • 2002
  • In this paper, we present a sliding mode control strategy for the re-orientation maneuver of rigid spacecraft containing rotating wheels. The wheels are considered as internal devices, and external inputs are employed for generation of control commands. The formulation is developed for a general case while particular example is applied to pitch bias momentum spacecraft with a single momentum wheel. The resultant control commands are used to take the gyroscopic effects into account which are caused by the rotating wheels. The controller designed demonstrates that the nutational motion of the pitch bias momentum spacecraft is effectively controlled. It is also assumed that the external control torque device is of on-off nature, and pulse width modulation technique is applied to construct proper control torque history.

Strip Tension Control Considering the Temperature Change in Multi-Span Systems

  • Lee Chang Woo;Shin Kee Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.958-967
    • /
    • 2005
  • The mathematical model for tension behaviors of a moving web by Shin (2000) is extended to the tension model considering the thermal strain due to temperature variation in furnace. The extended model includes the terms that take into account the effect of the change of the Young's Modulus, the thermal coefficient, and the thermal strain on the variation of strip tension. Computer simulation study proved that the extended tension model could be used to analyze tension behaviors even when the strip goes through temperature variation. By using the extended tension model, a new tension control method is suggested in this paper. The key factors of suggested tension control method include that the thermal strain of strip could be compensated by using the velocity adjustment of the helper-rollers. The computer simulation was carried out to confirm the performance of the suggested tension control method. Simulation results show that the suggested tension control logic not only overcomes the problem of the traditional tension control logic, but also improves the performance of tension control in a furnace of the CAL (Continuous Annealing Line).