• Title/Summary/Keyword: Control Rod Assembly

Search Result 44, Processing Time 0.028 seconds

Study on the mixing performance of mixing vane grids and mixing coefficient by CFD and subchannel analysis code in a 5×5 rod bundle

  • Bin Han ;Xiaoliang Zhu;Bao-Wen Yang;Aiguo Liu;Yanyan Xi ;Lei Liu ;Shenghui Liu;Junlin Huang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3775-3786
    • /
    • 2023
  • Mixing Vane Grid (MVG) is one of the most important structures in fuel assembly due to its high performance in mixing the coolant and ultimately increasing Critical Heat Flux (CHF), which avoids the temperature rising suddenly of fuel rods. To evaluate the mixing performance of the MVG, a Total Diffusion Coefficient (TDC) mixing coefficient is defined in the subchannel analysis code. Conventionally, the TDC of the spacer grid is obtained from the combination of experiments and subchannel analysis. However, the processing of obtaining and determine a reasonable TDC is much challenging, it is affected by boundary conditions and MVG geometries. In is difficult to perform all the large and costing rod bundle tests. In this paper, the CFD method was applied in TDC analysis. A typical 5 × 5 MVG was simulated and validated to estimate the mixing performance of the MVG. The subchannel code was used to calculate the TDC. Firstly, the CFD method was validated from the aspect of pressure drop and lateral temperature distribution in the subchannels. Then the effect of boundary conditions including the inlet temperature, inlet velocities, heat flux ratio between hot and cold rods and the arrangement of hot and cold rods on MVG mixing and TDC were studied. The geometric effects on mixing are also carried out in this paper. The effect of vane pattern on mixing was investigated to determine which one is the best to represent the grid's mixing performance.

Conceptual Design of a Magnetic Jack Type In-Vessel Control Element Drive Mechanism (자석잭 방식 내장형 제어봉구동장치 개념설계)

  • Park, Jinseok;Lee, Myounggoo;Chang, Sanggyoon;Lee, Daehee
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.225-232
    • /
    • 2015
  • The control element drive mechanism (CEDM) is an electro-mechanical device to control reactivity of the nuclear reactor. The conventional CEDM was installed on a nozzle of the reactor vessel closure head as an ex-vessel type. However, there have been demands for an in-vessel CEDM to fundamentally eliminate the rod ejection accident. Conceptual design of the in-vessel CEDM, which was developed based on the existing technology of the ex-vessel CEDM, is introduced in this paper.

An Expanded Use of Reactor Power Cutback System to Avoid Reactor Trips in the Event of an Inward Control Element Assembly Deviation (제어봉 인입편차시의 원자로 비상정지 방지를 위한 출력 급감발 계통의 확대 적용)

  • Hwang, Hae-Ryong;Ahn, Dawk-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.276-284
    • /
    • 1993
  • The ABB-CE System-80 reactor power cutback system(RPCS) is designed to enable continuous operation of the reactor without trip in the events of the loss of one of the two main feedwater pumps and loss of load, and thus improves plant availability in a cost effective manner. In this study expansion of RPCS has been investigated for continuous reactor operation without trip in the event of an inward control element assembly(CEA) deviation including a single rod drop. Under the expanded function of RPCS the control system will provide a rapid core power reduction on demand by releasing CEAs to drop into the core and reduce the turbine power, if necessary, to follow the reactor power variation. This design feature which is included as the new design features to be incorporated in the ABB-CE System-80+ meets the EPRI advanced light water reactor(ALWR) requirements. For this study core analysis models of System-80+ have been developed to simulate the nuclear steam supply system(NSSS) response as well as the RPCS initiation of rapid CEA insertion. The results of this study demonstrate that the reactor trip can be avoided in the event of inward CEA deviation including a single rod drop by the RPCS initiation and thus the plant availability and capacity factor would be increased.

  • PDF

Synthesis of Cubic and Rod Shapes CaCO3 by Hydrothermal Method (수열합성법을 이용한 큐빅과 로드형의 탄산칼슘 합성)

  • Kang, Kuk-Hyoun;Jeon, Sang-Chul;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.255-261
    • /
    • 2016
  • $CaCO_3$ was applied in various industries including rubber, plastics, paint, paper, food additives, and acid neutralizer, etc., owing to its excellent physical and chemical characteristics as well as various appearances of crystals and many reserves. In particular, research on controlling the structure and shape of $CaCO_3$ has attracted considerable attention recently, because the whiteness and physical characteristics of $CaCO_3$ depend on the size and shapes of the particles. In this study, $CaCO_3$ was synthesized using $CaCl_2$ and $(NH4)_2CO_3$, which has multi-shapes and structures, using a self-assembly method with a hydrothermal method. The structure and morphology of the $CaCO_3$ could be controlled by adjusting the pH and precursor concentration. In particular, the pH adjustment appeared to be a critical factor for the morphology and crystal form. In addition, the calcite and cubic shape were obtained at pH 7, while the mixed calcite, aragonite structure, and rod shapes appeared at pH 7 and over. Through an analysis of the particle formation process, the formation of the calcium carbonate particles was confirmed. The physicochemical properties of the synthesized $CaCO_3$ were analyzed by SEM, XRD, EDS, FTIR, and TG/DTA.

Feasibility Study on the Utilization of Mixed Oxide Fuel in Korean 900MWe PWR Core Through Conceptual Core Nuclear Design and Analysis

  • Joo, Hyung-Kook;Kim, Young-Jin;Jung, Hyung-Guk;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.299-309
    • /
    • 1997
  • The neutronic feasibility of typical Korean three-loop 900MWe class PWR core loaded with mixed oxide fuels for both annual and 18-month cycle strategies has been investigated as a means for spent fuel management. For this study, a method of determining equivalent plutonium content was developed under the equivalence concept which gives the same cycle length as uranium fuel. Optimal plutonium zoning within the MOX assembly was also designed with the aim of minimizing the peak md power. Conceptual core designs hate hen developed for equilibrium cycle with the following variations: annual and 18-month cycle, 1/3 and full MOX loading schemes, and typical and high moderation lattice. The analysis of key core physics parameters shows that in all cases considered satisfactory core designs seem to be feasible, though addition of control rod system and change in Technical Specification for soluble boron concentration are required for full MOX loading in order to meet the current design requirements.

  • PDF

Axial BP Zoning for the Soluble Boron Free Operation in Medium-Sized PWR

  • Kim, Jong-Chae;Kim, Myung-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.59-64
    • /
    • 1996
  • Feasibility of soluble boron free operation for the medium-sized commercial reactors was investigated. Westinghouse advanced reactor, AP-600 was chosen as a design prototype. Design modification was applied for the assembly design with gadolinia burnable poison-high Gd enrichment and axial poison zoning. CASMO and NECTA-C code system checked axial offset and peaking factors as fuels burned up. A core with complex axial burnable poison zoning satisfied design goals - small excess reactivity for 18 month cycle. Therefore, critical bank positioning for three control rod banks was sought with ease. A.O. value and Fq value were kept within the safety limit.

  • PDF

Study of fission gas products effect on thermal hydraulics of the WWER1000 with enhanced subchannel method

  • Bahonar, Majid;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.91-105
    • /
    • 2017
  • Thermal hydraulic (TH) analysis of nuclear power reactors is utmost important. In this way, the numerical codes that preparing TH data in reactor core are essential. In this paper, a subchannel analysis of a Russian pressurized water reactor (WWER1000) core with enhanced numerical code is carried out. For this, in fluid domain, the mass, axial and lateral momentum and energy conservation equations for desired control volume are solved, numerically. In the solid domain, the cylindrical heat transfer equation for calculation of radial temperature profile in fuel, gap and clad with finite difference and finite element solvers are considered. The dependence of material properties to fuel burnup with Calza-Bini fuel-gap model is implemented. This model is coupled with Isotope Generation and Depletion Code (ORIGEN2.1). The possibility of central hole consideration in fuel pellet is another advantage of this work. In addition, subchannel to subchannel and subchannel to rod connection data in hexagonal fuel assembly geometry could be prepared, automatically. For a demonstration of code capability, the steady state TH analysis of a the WWER1000 core is compromised with Thermal-hydraulic analysis code (COBRA-EN). By thermal hydraulic parameters averaging Fuel Assembly-to-Fuel Assembly method, the one sixth (symmetry) of the Boushehr Nuclear Power Plant (BNPP) core with regular subchannels are modeled. Comparison between the results of the work and COBRA-EN demonstrates some advantages of the presented code. Using the code the thermal modeling of the fuel rods with considering the fission gas generation would be possible. In addition, this code is compatible with neutronic codes for coupling. This method is faster and more accurate for symmetrical simulation of the core with acceptable results.

Nuclear Core Design for a Marine Small Power Reactor (선박용 소형동력로의 노심 핵설계)

  • 최유선;김종채;김명현
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.146-152
    • /
    • 1996
  • A small power reactor core of 108 MW$\_$th/ was designed with some design constraints: 2 year refueling cycle length, soluble boron free operation, low power density, and proven fuel assembly design - Uljin 3'||'&'||'4 design specifications. CASMO-3 and KINS-3 was used to evaluate operational capability for power level control via control rods. Cycle length, power peaking factor, M.T.C., and power coefficients were also checked. Designed core loaded with KOFAs satisfied all design goals. We found that much more burnable poisons are to be loaded with axial enrichment zoning. Control rod assemblies should be located at every other assemblies with more than 3 banks. Additional shutdown banks are proposed for the safe plant cooldown, which could be located at core periphery.

  • PDF

Modal Characteristics of Control Element Assembly Shroud for Korean Standard Nuclear Power Plant(I) : Pre-Test Analysis (한국표준형 원자력발전소 제어봉집합체 보호구조물의 모우드 특성)

  • Jhung, Myung-Jo;Choi, Suhn;Song, Heuy-Gap;Park, Keun-Bae
    • Computational Structural Engineering
    • /
    • v.5 no.3
    • /
    • pp.105-112
    • /
    • 1992
  • The design of reactor internals requires the accurate vibration characteristics of each component for subsequent dynamic structural response analysis. For Korean standard nuclear power plant some modifications on the Control Element Assembly shroud from the reference design have been made. Since the shroud is complex in geometry having an array of vertical round tubes and webs in a square grid pattern, and being tied down by preloaded tie rods into position, it is planned to perform a vibration measurement program consisting of both experimental and analytical modal studies upon that component. To determine the proper test conditions, the pre-test analysis has been performed using the general purpose structural analysis program ANSYS. Also the effects of the number of master degrees of freedom, holes in the web and tie-rod preload on the natural frequencies are examined prior to the pre-test analysis. After decision of appropriate finite element model, frequency analysis and harmonic analysis are performed and ideas for the test conditions such as the number of measurement points, their locations, measurement frequency range and the excitation force level are determined.

  • PDF

Sensitivity Analysis on PWR Reactivity Induced Accidents (가압경수로 반응도사고에 대한 민감도 분석)

  • Myung Hyun Kim;Un Chul Lee;Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.122-137
    • /
    • 1982
  • Analyzed is the sensitivity of reactor transient behavior to various reactor parameters during the reactivity induced accidents (RIA) of the Kori Unit 1. Included in the analysis is a partial spectrum of RIAs with relatively fast transients such as uncontrolled rod cluster control assembly bank withdrawl from a subcritical or low power startup condition and rod ejection accidents. The analysis can be performed generally in three steps: calculation of an average core power change, hot spot heat transfer calculation and DNBR (departure from nucleate boiling ratio) calculation. The computer codes used for the analysis are either developed based on the codes relevent to it. These codes are evaluated to be highly reliable. An extensive sensitivity analysis is performed to study the effects of various reactor design and operating parameters on the reactor transient behavior during the accidents. The assumptions and initial conditions used for the RIA analysis in the Kori Unit 1 FSAR (Final Safety Analysis Report) are reexamined, and the corresponding analysis results are reassessed, based on the sensitivity analysis results, to be conservative and reliable.

  • PDF