• 제목/요약/키워드: Control Parameters

검색결과 9,357건 처리시간 0.038초

유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정 (Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms)

  • 허석;곽문규
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

Integration of health monitoring and vibration control for smart building structures with time-varying structural parameters and unknown excitations

  • Xu, Y.L.;Huang, Q.;Xia, Y.;Liu, H.J.
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.807-830
    • /
    • 2015
  • When a building structure requires both health monitoring system and vibration control system, integrating the two systems together will be cost-effective and beneficial for creating a smart building structure with its own sensors (nervous system), processors (brain system), and actuators (muscular system). This paper presents a real-time integrated procedure to demonstrate how health monitoring and vibration control can be integrated in real time to accurately identify time-varying structural parameters and unknown excitations on one hand, and to optimally mitigate excessive vibration of the building structure on the other hand. The basic equations for the identification of time-varying structural parameters and unknown excitations of a semi-active damper-controlled building structure are first presented. The basic equations for semi-active vibration control of the building structure with time-varying structural parameters and unknown excitations are then put forward. The numerical algorithm is finally followed to show how the identification and the control can be performed simultaneously. The results from the numerical investigation of an example building demonstrate that the proposed method is feasible and accurate.

5상 농형 유도전동기의 정수 추정 (Parameters Estimation of Five-phase Squirrel-Cage Induction Motor)

  • 김민회
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.199-205
    • /
    • 2012
  • This paper propose a improved parameter estimations of five-phase squirrel-cage induction motor(IM) for speed control system on field oriented control(FOC). In order to high performance control of ac the motors using a FOC and DTC(direct torque control) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, rotor position and speed estimation, and so on. We are suggest a estimation method of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental. There are results of stator winding test, no-load test, locked rotor test, and obtained equivalent circuits using manufactured experimental apparatus. For presenting the superior performance of the speed control system in adapted the parameters, experimental results are presented using a 32-bit fixed point TMS320F2812 DSP with 1.5[KW] IM.

고정밀 서보 제어를 위한 다매개변수 자동 조정 방법 (An Optimal Approach to Auto-tuning of Multiple Parameters for High-Precision Servo Control Systems)

  • 김남국
    • 한국기계가공학회지
    • /
    • 제21권7호
    • /
    • pp.43-52
    • /
    • 2022
  • Design of a controller for a high-precision servo control system has been a popular topic while finding optimal parameters for multiple controllers is still a challenging subject. In this paper, we propose a practical scheme to optimize multi-parameters for the robust servo controller design by introducing a new cost function and optimization scheme. The proposed design method provides a simple and practical tool for the systematic servo design to reduce the control error with guaranteeing robust stability of the overall system. The reduction of the position error by 24% along with a faster convergence rate is demonstrated using a typical hard disk drive servo controller with 41 parameters.

파킨슨병 환자 대상 조음교대운동의 음향적 분석 (An Acoustic Analysis of Diadochokinesis in Patients with Parkinson's Disease)

  • 강영애;박현영;구본석
    • 말소리와 음성과학
    • /
    • 제5권4호
    • /
    • pp.3-15
    • /
    • 2013
  • The acoustic analysis of diadochokinesis(DDK) has been used to evaluate dysarthria. However, there has not been an automatic method to evaluate dysarthria. The aim of this study was to introduce a new automated program to measure DDK tasks and to apply this to clinical patients with idiopathic Parkinson's disease(IPD). Fourty-seven patients with IPD and a healthy control group of twenty participants were selected with every DDK task recorded three times. Twenty-five acoustic parameters in the program were developed. The relevant parameters were times of DDK, pitch related parameters, intensity parameters which were analyzed by 2-way ANOVA. Significant differences between the groups were found in the times of DDK, pitch related parameters, and intensity parameters. The findings indicated that the pitch of control group was more stable than that of the IPD. Even though the patients with IPD had a higher intensity value, this phenomenon was caused by the weakness of the IPD group who could not control their speech with a breath.

신경망 학습 변수의 시변 제어에 관한 연구 (A study on time-varying control of learning parameters in neural networks)

  • 박종철;원상철;최한고
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.201-204
    • /
    • 2000
  • This paper describes a study on the time-varying control of parameters in learning of the neural network. Elman recurrent neural network (RNN) is used to implement the control of parameters. The parameters of learning and momentum rates In the error backpropagation algorithm ate updated at every iteration using fuzzy rules based on performance index. In addition, the gain and slope of the neuron's activation function are also considered time-varying parameters. These function parameters are updated using the gradient descent algorithm. Simulation results show that the auto-tuned learning algorithm results in faster convergence and lower system error than regular backpropagation in the system identification.

  • PDF

GA를 이용한 전기유압식 가변펌프의 압력제어 (Pressure Control of Electro-Hydraulic Variable Displacement Pump Using Genetic Algorithms)

  • 안경관;현장환;조용래;오범승
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.48-55
    • /
    • 2004
  • This study presents a genetic algorithm-based method fur optimizing control parameters in the pressure control of electro-hydraulic pump with variable displacement. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics and search the optimal control parameters maximizing a measure that evaluates the performance of a system. Four control gains of the PI-PD cascade controller for an electro-hydraulic pressure control system are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that genetic algorithm is an efficient scheme in optimizing control parameters of the pressure control of electro-hydraulic pump with variable displacement.

유전알리고즘을 이용한 유압모터의 속도제어파라메터 최적화 (Optimization of control parameters for speed control of a hydraulic motor using genetic algorithms)

  • 현장환;안철현;이정오
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.139-145
    • /
    • 1997
  • This study is concerned with the optimizing method of control parameters for a hydraulic speed control system by using genetic algorithms which are general purpose search algorithms based on natural evolution and genetics. It is shown that the genetic altorithms satisfactorily oiptimized control gains of the PI speed control system of an electrohydraulic servomotor and that optimization of control para- meters can be achived without much experience and knowledge for tuning. It is also shown that optimal gains may be determined from fitness distribution curves plotted in given gain spaces.

  • PDF

Evolution Strategy를 이용한 로봇 매니퓰레이터의 슬라이딩 모드 제어 (Sliding Mode Control for Robot Manipulator Usin Evolution Strategy)

  • 김현식;박진현;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.379-382
    • /
    • 1996
  • Evolution Strategy is used as an effective search algorithm in optimization problems and Sliding Mode Control is well known as a robust control algorithm. In this paper, we propose a Sliding Mode Control Method for robot manipulator using Evolution Strategy. Evolution Strategy is used to estimate Sliding Mode Control Parameters such as sliding surface gradient, continuous function boundary layer, unknown plant parameters and switching gain. Experimental results show the proposed control scheme has accurate and robust performances with effective search ability.

  • PDF

시간지연 제어와 슬라이딩모드 제어기법을 이용한 불확실한 동적 시스템의 강인 제어기 설계 (Robust Controller Design for Uncertain Dynamic System Using Time Delay Control and Sliding Mode Control Method)

  • 박병석;이인성;윤지섭;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.225-225
    • /
    • 2000
  • We propose the hybrid robust controller for TDC(Time Delay Control) and SMC(Sliding Mode Control) method. TDC and SMC deal with the time-varying system parameters, unknown dynamics and unexpected disturbance. This controller is applied to follow the desired reference model for the uncertain time-varying overhead crane. The control performance is evaluated through simulation. The theoretical results indicate That the proposed controller shows excellent performance to an overhead crane with the uncertain time-varying parameters and disturbance.

  • PDF