• Title/Summary/Keyword: Control Kinematics

Search Result 507, Processing Time 0.025 seconds

An Analysis for the Efficient Dissemination of Beacon Messages in Vehicle-to-Vehicle (V2V) Communications (자동차 간 통신에서 비컨 메시지의 효율적인 방송을 위한 성능 분석)

  • Nguyen, Hoa-Hung;Bhawiyuga, Adhitya;Jeong, Han-You
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6C
    • /
    • pp.483-491
    • /
    • 2012
  • In vehicle-to-vehicle (V2V) communications, each vehicle should periodically disseminate a beacon message including the kinematics information, such as position, speed, steering, etc., so that a neighbor vehicle can better perceive and predict the movement of the vehicle. However, a simple broadcasting of such messages may lead to a low reception probability as well as an excessive delay. In this paper, we attempt to analyze the impact of the following key parameters of the beacon dissemination on the performance of vehicular networks: beacon period, carrier-sensing range, and contention window (CW) size. We first derive a beacon period which is inversely proportional to the vehicle speed. Next, we mathematically formulate the maximum beacon load to demonstrate the necessity of the transmit power control. We finally present an approximate closed-form solution of the optimal CW size that leads to the maximum throughput of beacon messages in vehicular networks.

Development of a Biomechanical Motion System for the Rehabilitation of Various Joints (다 관절 재활운동을 위한 생체역학적 운동구현 시스템 개발)

  • Lee Y. S.;Baek C. S.;Jang J. H.;Sim H. J.;Han C. S.;Han J. S.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.511-517
    • /
    • 2004
  • The existing rehabilitation systems were developed to exercise specific joints only. Therefore rehabilitating the various joints of human, various kinds of devices are need. To overcome these defects, this paper proposed the CMRS, an integrated system that performs various rehabilitation exercises. The characteristics of motion and the positions between human body and the system were investigated with the kinematics analysis of upper and lower limb of human body. We presented a proper mechanism to develop a rehabilitation device on the base of the study and studied the relative positions between head part and human joints. Through the simulations, the possibility of rehabilitation system was verified. And the base frame was also developed for convenient and stable position control. Finally, the CMRS was developed as an 8 degree of freedom mechanism. It is expected that the CMRS will be applied to the rehabilitations of various joints.

Statistical Review for New USNCAP Side Crash Test Results (새로운 미국 측면 신차안전도평가 결과에 대한 통계적 분석)

  • Beom, Hyenkyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.104-113
    • /
    • 2013
  • New USNCAP has been carried out by NHTSA including front and side crash from MY2011. In this paper, test results for USNCAP Side crash were reviewed by statistical analysis. This review focused on side crash test results to investigate the effect of changes from new USNCAP side crash test protocol among 30 passenger cars. These results were summarized as followings. Total number of 5 star vehicles on the front seat dummy (16 vehicles, 53.3%) was slightly smaller than the rear seat's (17 vehicles, 56.7%) in MDB test. For the ES-2re dummy, chest injury, ie maximum rib deflection contributed to 66% in the mean value of $P_{joint}$. Pelvis injury was highly dependent upon performance up to 87% in the SID-IIs dummy cited on the rear seat in average $P_{joint}$. For Pole test, pelvis injury made contribution to the average performance to 83%. For standard deviation, it showed the largest value in the same body region as the mean value for each dummy. Overall front seat performance showed 14 vehicles, 44.6% with 5 star vehicles less than each MDB or Pole test result. This result showed that performances in MDB test were different pattern to Pole test on driver position. Number of 5star vehicles for overall side NCAP performance are 18 passenger cars (60%). Curtain airbag and driver thorax airbag were equipped in all test vehicles. One vehicle is equipped with thorax airbag in the rear seat. Results from two side tests considered as reliability problem, ie the cause for large standard deviation in side crash test. Consequently, the countermeasure for new USNCAP side crash test is essential to design the effective side structures for side collision and to control well dummy kinematics with curtain and thorax airbag in order to reduce chest and pelvis injuries.

Effect of Wearing Ankle Weights on Underwater Treadmill Walking

  • Park, Que Tae;Kim, Suk Bum;O'Sullivan, David
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.105-112
    • /
    • 2019
  • Objective: The main purpose of this study was to investigate the effects of wearing an ankle weight belt while performing gait in water by focusing on the effect of using ankle weights have on the gait kinematics and the muscle activities for developing optimum training strategies. Method: A total of 10 healthy male university students were recruited for the study. Each participant was instructed to perform 3 gait conditions; normal walking over ground, walking in water chest height, and walking in water chest height while using ankle weights. All walking conditions were set at control speed of $4km/h{\pm}0.05km/h$. The depth of the swimming pool was at 1.3 m, approximately chest height. The motion capture data was recorded using 6 digital cameras and the EMG was recorded using waterproof Mini Wave. From the motion capture data, the following variables were calculated for analysis; double and single support phase (s), swing phase (s), step length (%height), step rate (m/s), ankle, knee, and hip joint angles ($^{\circ}$). From the electromyography the %RVC of the lower limb muscles medial gastrocnemius, rectus femoris, erector spinae, semitendinosus, tibialis anterior, vastus lateralis oblique was calculated. Results: The results show significant differences between the gait time, and step length between the right and left leg. Additionally, the joint angular velocities and gait velocity were significantly affected by the water resistance. As expected, the use of the ankle weights increased all of the lower leg maximum muscle activities except for the lower back muscle. Conclusion: In conclusion, the ankle weights can be shown to stimulate more muscle activity during walking in chest height water and therefore, may be useful for rehabilitation purposes.

The Age-Related Changes of Whole-Body Motor Variability during Sit-to-Stand Task (쪼그려 앉았다 일어나기 과제 수행 시 발생하는 전신 운동가변성의 발달적 변화)

  • Kim, Min Joo;Shim, Jae Kun
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.3
    • /
    • pp.87-93
    • /
    • 2022
  • Objective: The purpose of this research was to investigate the age-related changes in whole-body motor variability during sit-to-stand (STS) task. It has been reported that children perform motor tasks less accurately with greater variability as compared to adults. However, it is still unknown how they utilize the abundant degrees of freedom and accomplish voluntary actions. Uncontrolled manifold (UCM) analysis has been used to partition motor variabilities into two independent variability components, task-relevant variability (VORT) and task-irrelevant variability (VUCM). We investigated what differences exist between children and adults with respect to these two motor variability components in relation to motor development stages. Method: Ten 6-year-old children (height: 116.2 ± 4.3 cm, weight: 23.1 ± 3.9 kg, motor development assessment percentile score: 77.5 ± 18.6%), ten 10-year-old children (height: 138.7 ± 7.2 cm, weight: 35.8 ± 10.3 kg, motor development assessment percentile score: 73.9 ± 12.7%), and ten young adults (age: 23 ± 1.6 year-old, height: 164.3 ± 11.4 cm, weight: 60.8 ± 12.0 kg) participated in this study. Each participant performed STS ten times, and a motion capture system was used to capture the whole-body kinematics. Each segment centers of mass and the whole-body center of mass were calculated, and UCM analysis was used to quantify motor variabilities, VORT and VUCM. One-way ANOVA was used for statistical analysis. Results: We found that children produced more motor variabilities in VORT and VUCM in all three dimensions, anterior-posterior, medial-lateral, and vertical. As age increased, both, VORT and VUCM significantly decreased (p<.05). Conclusion: The greater VORT found in children compared to adults indicates that the repeatability over repetitions improves through development, while the greater VUCM found in children suggests that children better utilize the abundant degrees of freedom during STS compared to adults.

Seminal plasma modulates post-thaw longevity and motility of frozen sperm in dromedary camel

  • Fahimeh Seyedasgari;Behnam Asadi;Ellen Kim
    • Animal Bioscience
    • /
    • v.36 no.12
    • /
    • pp.1821-1830
    • /
    • 2023
  • Objective: This study investigated the effect of adding seminal plasma to frozen-thawed semen on the quality of sperm and pregnancy following insemination in dromedary camels. Methods: In experiment 1, the frozen-thawed semen from 9 collections (3 bulls) was further diluted with either the base extender or homologous seminal plasma (HSP). In the second experiment, a pooled sample of frozen-thawed semen was diluted with either seminal plasma from another three bulls. Live percentage, total and progressive motility, functional and acrosome integrity, and sperm kinematics were evaluated at 15, 60, and 120 minutes post-thawing and compared to the non-treated control. In experiment 3, frozen semen was used to inseminate camels in the following experimental groups: 1-Single insemination with double dose undiluted frozen semen (n = 9); 2-Re-insemination in 6 hours with undiluted semen (n = 13); 3-Single insemination with HSP treated sperm (n = 14). Results: Frozen-thawed sperm diluted in HSP or the non-homologous seminal plasma from Bull C indicated an improvement in all parameters after 1 hour post-thawing incubation (p<0.05). The proportion of total and progressively motile sperm did not drop significantly at 60 minutes post-thawing when diluted with the seminal plasma of Bull C (p>0.05). Double insemination with nontreated sperm and single insemination with HSP-treated sperm resulted in similar pregnancy rates (15.3% vs 21.4%, p>0.05). None of the camels conceived with double-dose single insemination of nontreated sperm. Conclusion: Seminal plasma improves sperm longevity and motility after thawing in dromedary camel with a significant between-bull variation in effect. Low post-thaw sperm longevity might be the cause behind the low pregnancy rates in frozen semen insemination of dromedary camels.

Kinematic Effects of Newly Designed Knee-Ankle-Foot Orthosis With Oil Damper Unit on Gait in People With Hemiparesis

  • Park, Hyung-Ki;Kim, Tack-Hoon;Choi, Houng-Sik;Roh, Jung-Suk;Cynn, Heon-Seock;Kim, Jong-Man
    • Physical Therapy Korea
    • /
    • v.20 no.1
    • /
    • pp.64-73
    • /
    • 2013
  • The purposes of this study were to develop a new orthosis controlling ankle and knee joint motion during the gait cycle and to identify the effects of the newly designed orthosis on gait kinematics and tempospatial parameters, including coordination of the extremities in stroke patients. Fifteen individuals who had sustained a stroke, onset was 16 months, participated in this study. Before application of the measurement equipment the subjects were accustomed to walking on the ankle-foot orthosis (AFO) or stance control knee with knee flexion assisted-oil damper ankle-foot orthosis (SCKAFO) for 5 minutes. Fifteen patients were investigated for 45 days with a 3-day interval between sessions. Measurements were walking in fifteen stroke with hemiparesis on the 3D motion analysis system. Comparison of AFO and SCKAFO are gait pattern. The difference between the AFO and SCKAFO conditions was significant in the gait velocity, step length of the right affected side, stance time of both legs, step-length asymmetry ratio, single-support-time asymmetry ratio, ${\phi}$-thigh angle and ${\phi}$-shank angle in the mid swing (p<.001). Using a SCKAFO in stroke patients has shown similar to normal walking speeds can be attained for walking efficiency and is therefore desirable. In this study, the support time of the affected leg with the SCKAFO was longer than with the AFO and the asymmetry ratio of single support time decreased by more than with the AFO. This indicates that the SCKAFO was effective for improving gait symmetry, single-support-time symmetry. This may be due to the decrease of gait asymmetry. Thus, the newly designed SCKAFO may be useful for promoting gait performance by improving the coordination of the extremity and decreasing gait asymmetry in chronic stroke patients.

Effects of Rehabilitation Duration on Lower Limb Joints Biomechanics dur ing Drop Landing in Athletes with Functional Ankle Instability (기능적 발목 불안정성 선수들의 드롭랜딩 시 재활 기간이 하지 관절의 운동역학적 특성에 미치는 영향)

  • Cho, Joon-Haeng;Kim, Kyoung-Hun;Lee, Hae-Dong;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.395-406
    • /
    • 2010
  • The purpose of this study was to analyze the changes in kinematic and kinetic parameters of lower extremity joint according to rehabilitation period. Fourteen collegiate male athletes(age: $22.1{\pm}1.35$ years, height: $182.46{\pm}9.45cm$, weight: $88.63{\pm}9.25kg$) and fourteen collegiate athletes on functional ankle instability(age: $21.5{\pm}1.35$ years, height: $184.45{\pm}9.42cm$, weight: $92.85{\pm}10.85kg$) with the right leg as dominant were chosen. The subjects performed drop landing. The date were collected by using VICON with 8 camera to analyze kinematic variables and force platform to analyze kinetic variables. There are two approaches of this study, one is to compare between groups, the other is to find changes of lower extremity joint after rehabilitation. In comparison to the control group, FAI group showed more increased PF & Inversion at IC and decreased full ROM when drop landing. Regarding the peak force and loading rate, it resulted in higher PVGRF and loading. FAI group used more increased knee and hip ROM because of decreased ankle ROM to absorb the shock. And it used sagittal movement to stabilize. In terms of rehabilitation period, FAI group showed that landing patterns were changed and it increased total ankle excursion and used all lower extremity joint close to normal ankle. Regarding the peak force and loading rate, FAI group decreased PVGRF and loading rate. and also showed shock absorption using increased ankle movement. And COP variable showed that proprioception training increased stability during 8 weeks. The results of this study suggest that 8 weeks rehabilitation period is worthwhile to be considered as a way to improve neuromuscular control and to prevent sports injuries.

Development of Collaborative Robot Control Training Medium to Improve Worker Safety and Work Convenience Using Image Processing and Machine Learning-Based Hand Signal Recognition (작업자의 안전과 작업 편리성 향상을 위한 영상처리 및 기계학습 기반 수신호 인식 협동로봇 제어 교육 매체 개발)

  • Jin-heork Jung;Hun Jeong;Gyeong-geun Park;Gi-ju Lee;Hee-seok Park;Chae-hun An
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.543-553
    • /
    • 2022
  • A collaborative robot(Cobot) is one of the production systems presented in the 4th industrial revolution and are systems that can maximize efficiency by combining the exquisite hand skills of workers and the ability of simple repetitive tasks of robots. Also, research on the development of an efficient interface method between the worker and the robot is continuously progressing along with the solution to the safety problem arising from the sharing of the workspace. In this study, a method for controlling the robot by recognizing the worker's hand signal was presented to enhance the convenience and concentration of the worker, and the safety of the worker was secured by introducing the concept of a safety zone. Various technologies such as robot control, PLC, image processing, machine learning, and ROS were used to implement this. In addition, the roles and interface methods of the proposed technologies were defined and presented for using educational media. Students can build and adjust the educational media system by linking the introduced various technologies. Therefore, there is an excellent advantage in recognizing the necessity of the technology required in the field and inducing in-depth learning about it. In addition, presenting a problem and then seeking a way to solve it on their own can lead to self-directed learning. Through this, students can learn key technologies of the 4th industrial revolution and improve their ability to solve various problems.

Development of the Maintenance Process Using Virtual Prototyping for the Equipment in the MSM's Unreachable Area of the Hot cell

  • Lee, Jong-Youl;Song, Tai-Gil;Kim, Sung-Hyun;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1354-1358
    • /
    • 2003
  • The process equipment for handling high level radioactive materials like spent fuels is operated in a hot cell, due to high radioactivity. Thus, this equipment should be maintained and repaired optimally by a remotely operated manipulator. The master-slave manipulators(MSM) are widely used as a remote handling device in the hot cell. The equipment in the hot cell should be optimally placed within the workspace of the wall-mounted slave manipulator for the maintenance operation. But, because of the complexity in the hot cell, there would be some parts of the equipment that are not reached by the MSM. In this study, the maintenance process for these parts of the equipment is developed using virtual prototyping technology. To analyze the workspace of the maintenance device in the hot cell and to develop the maintenance processes for the process equipment, the virtual mock-up of the hot cell for the spent fuel handling process is implemented using IGRIP. For the implementation of the virtual mock-up, the parts of the equipment and maintenance devices such as the MSM and servo manipulator are modeled and assembled in 3-D graphics, and the appropriate kinematics are assigned. Also, the virtual workcell of the spent fuel management process is implemented in the graphical environment, which is the same as the real environment. Using this mock-up, the workspace of the manipulators in the hot cell and the operator's view through the wall-mounted lead glass are analyzed. Also, for the dedicated maintenance operation, the analyses for the detailed area of the end effectors in accordance with the slave manipulator's position and orientation are carried out. The parts of the equipment that are located outside of the MSM's workspace are specified and the maintenance process of the parts using the servo manipulator that is mounted in the hot cell is proposed. To monitor the process in the hot cell remotely, the virtual display system by a virtual camera in the virtual work cell is also proposed. And the graphic simulation using a virtual mock-up is performed to verify the proposed maintenance process. The maintenance process proposed in this study can be effectively used in the real hot cell operation and the implemented virtual mock-up can be used for analyzing the various hot cell operations and enhancing the reliability and safety of the spent fuel management.

  • PDF