• Title/Summary/Keyword: Control Conditions

Search Result 10,746, Processing Time 0.036 seconds

NECESSARY CONDITIONS FOR OPTIMAL BOUNDARY CONTROL PROBLEM GOVERNED BY SOME CHEMOTAXIS EQUATIONS

  • Ryu, Sang-Uk
    • East Asian mathematical journal
    • /
    • v.29 no.5
    • /
    • pp.491-501
    • /
    • 2013
  • This paper is concerned with the necessary conditions of the optimal boundary control for some chemotaxis equations. We obtain the existence and the necessary conditions of the optimal boundary control in the space $(H^1(0,T))^2$. Moreover, under some assumptions, we show the uniqueness of the optimal control.

OPTIMALITY CONDITIONS FOR OPTIMAL CONTROL GOVERNED BY BELOUSOV-ZHABOTINSKII REACTION MODEL

  • RYU, SANG-UK
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.327-337
    • /
    • 2015
  • This paper is concerned with the optimality conditions for optimal control problem of Belousov-Zhabotinskii reaction model. That is, we obtain the optimality conditions by showing the differentiability of the solution with respect to the control. We also show the uniqueness of the optimal control.

A Class of Singular Quadratic Control Problem With Nonstandard Boundary Conditions

  • Lee, Sung J.
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.21-49
    • /
    • 1986
  • A class of singular quadratic control problem is considered. The state is governed by a higher order system of ordinary linear differential equations and very general nonstandard boundary conditions. These conditions in many important cases reduce to standard boundary conditions and because of the conditions the usual controllability condition is not needed. In the special case where the coefficient matrix of the control variable in the cost functional is a time-independent singular matrix, the corresponding optimal control law as well as the optimal controller are computed. The method of investigation is based on the theory of least-squares solutions of multi-valued operator equations.

  • PDF

On D-admissibility Conditions of Singular Systems

  • Gao, Lixin;Chen, Wenhai
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.86-92
    • /
    • 2007
  • In this paper, we first establish $D_L$-admissibility and $D_R$-admissibility conditions for singular systems. The admissibility conditions expressed as Lyapunov type inequalities extend the existed results of normal systems to singular systems. As special cases the admissibility conditions of the continuous-time and the discrete-time singular systems can be obtained directly. The results established in this paper can be applied to solve the problems of eigenvalue assignment, regional pole-placement and robust control etc.

Cornering Stability Control of a Personal Electric Vehicle with Direct-Drive In-Wheel Motors (직접구동 인 휠 모터를 장착한 1인승 전기자동차의 선회안정성제어)

  • Nam, Kanghyun;Eum, Sangjune
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.919-924
    • /
    • 2016
  • This paper proposes a robust control design method for improving the cornering stability of a personal electric vehicle equipped with in-wheel motors. In general, vehicles undergo severe parameter variations and unpredictable disturbances with respect to a wide range of driving conditions (e.g., road surface conditions and vehicle velocity conditions). For this reason, robust control design techniques are required to guarantee consistent driving performances and robustness against various driving conditions. In this paper, an adaptive sliding mode control method is employed to enhance cornering stability by controlling the direct-drive in-wheel motors independently. Additionally, in order to confirm the effectiveness of a proposed control method, real driving tests with an experimental personal electric vehicle are performed.

NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR CONTROL SYSTEMS DESCRIBED BY INTEGRAL EQUATIONS WITH DELAY

  • Elangar, Gamal-N.;Mohammad a Kazemi;Kim, Hoon-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.625-643
    • /
    • 2000
  • In this paper we formulate an optimal control problem governed by time-delay Volterra integral equations; the problem includes control constraints as well as terminal equality and inequality constraints on the terminal state variables. First, using a special type of state and control variations, we represent a relatively simple and self-contained method for deriving new necessary conditions in the form of Pontryagin minimum principle. We show that these results immediately yield classical Pontryagin necessary conditions for control processes governed by ordinary differential equations (with or without delay). Next, imposing suitable convexity conditions on the functions involved, we derive Mangasarian-type and Arrow-type sufficient optimality conditions.

  • PDF

A Comparison of Control Algorithms for a Doubly Fed Induction Generator in Medium-voltage Wind Power System under Unbalanced Conditions

  • Go, Yu-Ran;Park, Hyeon-Cheol;Zhu, Yaqiong;Suh, Yong-Sug
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.194-195
    • /
    • 2010
  • This paper investigates control algorithms for a doubly fed induction generator (DFIG) with back-to-back converter in medium-voltage wind power system under unbalanced grid conditions. Operation of DFIG under unbalanced grid conditions causes several problems such as overcurrent, unbalanced currents, active power pulsation and torque pulsation. Three different control algorithms to compensate for the unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, efficiency, harmonic distortions and torque pulsation. The control algorithm having zero amplitude of negative sequence current shows the most cost-effective performance concerning fault ride-through capability and efficiency. The control algorithm for nullifying the oscillating component of the instantaneous active power generates least harmonic distortions. Combination of these two control algorithms depending on the operating requirements presents most optimized performance factors under the generalized unbalanced operating conditions.

  • PDF

ON OPTIMAL CONTROL FOR COOPERATIVE ELLIPTIC SYSTEMS UNDER CONJUGATION CONDITIONS

  • H.M. SERAG;L.M. ABD-ELRHMAN;A.A. AL-SABAN
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.2
    • /
    • pp.229-245
    • /
    • 2023
  • In this paper, we consider cooperative elliptic systems under conjugation conditions. We first prove the existence of the state for 2 × 2 cooperative elliptic systems with Dirichlet and Neumann conditions, then we find the set of equations and inequalities that characterizes the optimal control of distributed type for these systems. The case of n × n cooperative systems is also established.

Control Strategy of Total Output Power Ripple Cancellation for DFIG in MV Wind Power Systems under Unbalanced Grid Conditions

  • Han, Daesu;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.355-356
    • /
    • 2015
  • This paper proposes a control strategy of total output power ripple cancellation for both of Machine-Side Converter (MSC) and Grid-Side Converter (GSC) in a DFIG under unbalanced grid conditions. The proposed control strategy for the MSC is the zero torque ripple control algorithm with an enhanced LVRT capability. The control algorithm for the MSC exhibits reduced torque pulsation in steady-state unbalanced grid conditions. In addition, this control algorithm also minimizes a peak value of rotor current in transient unbalanced grid conditions. The total output power ripple cancellation control algorithm is adopted in the GSC. The total output power ripple cancellation is achieved by nullifying the oscillating component of the total output active and reactive power at the summing point of stator and rotor of DFIG. The proposed control strategy for the GSC reduces the output power oscillation leading to the improved quality of wind farms output.

  • PDF