• Title/Summary/Keyword: Continuum distribution

Search Result 160, Processing Time 0.022 seconds

Analysis and Prediction for Spatial Distribution of Functional Feeding Groups of Aquatic Insects in the Geum River (금강 수계 수서곤충 섭식기능군의 공간분포 분석 및 예측)

  • Kim, Ki-Dong;Park, Young-Jun;Nam, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.99-118
    • /
    • 2012
  • The aim of this study is to define a correlation between spatial distribution characteristics of FFG(Functional Feeding Groups) of aquatic insects and related environmental factors in the Geum River based on the theory of RCC(River Continuum Concept). For that objective we had used SMRA(Stepwise Multiple Regression Analysis) method to analyze close relationship between the distribution of aquatic insects and the physical and chemical factors that may affect their inhabiting environment in the study area. And then, a probabilistic method named Frequency Ratio Model(FRM) and spatial analysis function of GIS were applied to produce a predictive distribution map of biota community considering their distribution characteristics according to the environmental factors as related variables. As a result of SMRA, the values of decision coefficient for factors of elevation, stream width, flow velocity, conductivity, temperature and percentage of sand showed higher than 0.5. Therefore these 6 environmental factors were considered as major factors that might affect the distribution characteristics of aquatic insects. Finally, we had calculated RMSE(Root Mean Square Error) between the predicted distribution map and prior survey database from other researches to verify the result of this study. The values of RMSE were calculated from 0.1892 to 0.4242 according to each FFG so we could find out a high reliability of this study. The results of this study might be used to develop a new estimation method for aquatic ecosystem with macro invertebrate community and also be used as preliminary data for conservation and restoration of stream habitats.

Characteristics of failure surfaces induced by embankments on soft ground

  • Hong, Eun-Soo;Song, Ki-Il;Yoon, Yeo-Won;Hu, Jong-Wan
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.17-31
    • /
    • 2014
  • This paper investigates the development of failure surfaces induced by an embankment on soft marine clay deposits and the characteristics of such surfaces through numerical simulations and its comparative study with monitoring results. It is well known that the factor of safety of embankment slopes is closely related to the vertical loading, including the height of the embankment. That is, an increase in the embankment height reduces the factor of safety. However, few studies have examined the relationship between the lateral movement of soft soil beneath the embankment and the factor of safety. In addition, no study has investigated the distribution of the pore pressure coefficient B value along the failure surface. This paper conducts a continuum analysis using finite difference methods to characterize the development of failure surfaces during embankment construction on soft marine clay deposits. The results of the continuum analysis for failure surfaces, stress, displacement, and the factor of safety can be used for the management of embankment construction. In failure mechanism, it has been validated that a large shear displacement causes change of stress and pore pressure along the failure surface. In addition, the pore pressure coefficient B value decreases along the failure surface as the embankment height increases. This means that the rate of change in stress is higher than that in pore pressure.

Submillimeter Observations of the Infrared Dark Cloud G049.40-00.01

  • Kang, Mi-Ju;Choi, Min-Ho;Bieging, John H.;Rho, Jeong-Hee;Lee, Jeong-Eun;Tsai, Chao-Wei
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.77.2-77.2
    • /
    • 2012
  • Infrared dark clouds(IRDCs) are believed to be the progenitors of massive stars and clusters. We obtained 350 and 850 ${\mu}m$ continuum maps of the IRDC G049.40-00.01 using SHARC-II on CSO. Twenty-one dense clumps were identified within G049.40-00.01 based on the 350 ${\mu}m$ continuum map with an angular resolution of about 9.6". We present submillimeter continuum maps and report physical properties of the clumps. The masses of clumps are from 50 to 600 solar mass. About 70% of the clumps are associated with bright 24 ${\mu}m$ emission sources indicating protostars. The most massive two clumps show enhanced, extended 4.5 ${\mu}m$ emission representing on-going star forming activity. The size-mass distribution of the clumps suggests that many of them are forming high-mass stars. G049.40-00.01 contains numerous objects in various evolutionary stages of star formation, from pre-stellar clumps to H II regions.

  • PDF

Differences between N-PDFs derived from Continuum and Molecular Emission Toward the Orion A Molecular Cloud

  • Lee, Yong-Hee;Lee, Jeong-Eun;Yun, Hyeong-Sik;Kim, Jongsoo;Choi, Yunhee;Mairs, Steve;Johnstone, Doug
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.66.2-66.2
    • /
    • 2018
  • The probability distribution function of column density (N-PDF) has been used for studying the characteristics of molecular clouds. In particular, the properties of N-PDF can reveal the nature of turbulence and gravity inside the molecular cloud. We use the dust continuum emission at $450{\mu}m$ and $850{\mu}m$ observed as part of the JCMT Gould Belt Survey (GBS) (Mairs et al. 2016), the 12CO J=1-0 line observed with the 45 m telescope at Nobeyama Radio Observatory (NRO) (Shimajiri et al. 2011), 13CO, C18O and HCO+ J=1-0 observed with the 13.7 m telescope at Taeduk Radio Astronomy Observatory (TRAO), as part of the TRAO key science project, "mapping Turbulent properties In star-forming MolEcular clouds down to the Sonic scale" (TIMES; PI: Jeong-Eun Lee). We here present the N-PDFs derived from the continuum and the molecular line emission toward the Orion A molecular cloud and compare their behaviors in order to investigate the chemical and optical depth effects on the N-PDF.

  • PDF

DEVELOPMENT OF A 2-D GAS-KINETIC BGK SOLVER FOR CONTINUUM AND TRANSITIONAL FLOWS ON UNSTRUCTURED MESHES (비정렬 격자계에서 연속체 및 천이 영역 유동 해석을 위한 2차원 Gas-Kinetic BGK 해석자 개발)

  • Yang, T.H.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.49-57
    • /
    • 2014
  • In the present study, 2-D gas-kinetic flow solver on unstructured meshes was developed for flows from continuum to transitional regimes. The gas-kinetic BGK scheme is based on numerical solutions of the BGK simplification of the Boltzmann transport equation. In the initial reconstruction, the unstructured version of the linear interpolation is applied to compute left and right states along a cell interface. In the gas evolution step, the numerical fluxes are computed from the evaluation of the time-dependent gas distribution function around a cell interface. Two-dimensional compressible flow calculations were performed to verify the accuracy and robustness of the current gas-kinetic approach. Gas-kinetic BGK scheme was successfully applied to two-dimensional steady and unsteady flow simulations with strong contact discontinuities. Exemplary hypersonic viscous simulations have been conducted to analyze the performances of the gas-kinetic scheme. The computed results show fair agreement with other standard particle-based approaches for both continuum part and transitional part.

Multi-objective BESO topology optimization for stiffness and frequency of continuum structures

  • Teimouri, Mohsen;Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.181-190
    • /
    • 2019
  • Topology optimization of structures seeking the best distribution of mass in a design space to improve the structural performance and reduce the weight of a structure is one of the most comprehensive issues in the field of structural optimization. In addition to structures stiffness as the most common objective function, frequency optimization is of great importance in variety of applications too. In this paper, an efficient multi-objective Bi-directional Evolutionary Structural Optimization (BESO) method is developed for topology optimization of frequency and stiffness in continuum structures simultaneously. A software package including a Matlab code and Abaqus FE solver has been created for the numerical implementation of multi-objective BESO utilizing the weighted function method. At the same time, by considering the weaknesses of the optimized structure in single-objective optimizations for stiffness or frequency problems, slight modifications have been done on the numerical algorithm of developed multi-objective BESO in order to overcome challenges due to artificial localized modes, checker boarding and geometrical symmetry constraint during the progressive iterations of optimization. Numerical results show that the proposed Multiobjective BESO method is efficient and optimal solutions can be obtained for continuum structures based on an existent finite element model of the structures.

Elastic-plastic formulation for concrete encased sections interaction diagram tracing

  • Fenollosa, Ernesto;Gil, Enrique;Cabrera, Ivan;Vercher, Jose
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.861-876
    • /
    • 2015
  • Composite sections design consists on checking that the point defined by axial load and bending moment keeps included within the surface enclosed by the section interaction curve. Eurocode 4 suggests a method for tracing this diagram based on the plastic stress distribution method. However curves obtained according to this criterion overvalue concrete encased sections bearing capacity, especially when axial force comes with high bending moment values, so a correction factor is required. This article proposes a method for tracing this diagram based on the strain compatibility method. When stresses on the section are integrated by considering the Navier hypothesis, the use of the materials nonlinear constitutive equations provides curves much more adjusted to reality. This process requires the use of rather complex software which might reveal as too complex for practitioners. Preserving the same criteria of an elastic-plastic stress distribution, this article presents alternative expressions to obtain the failure internal forces in five significant points of the interaction diagram having considered five different positions of the neutral axis. These expressions are simply enough for their practical application. Concordance of curves traced strictly relying on these five points with those obtained by computer assisted stress integration considering the strain compatibility method and even with Eurocode 4 weighted curves will be presented for three different cross-sections and two different concrete strengths, revealing very good results.

Two-dimensional continuum modelling of an inductively coupled plasma reactor

  • Kim, Dong-Ho;Shung, Won-Young;Kim, Do-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.2
    • /
    • pp.128-133
    • /
    • 2000
  • Numerical analysis of the transport phenomena in an inductively coupled plasma reactor was conducted with two-dimensional axisymmetric model including the electromagnetic field model, electron and species density models. The spatial distribution of the charged species in the ion flux to the wafer have been calculated to examine the influence of the process conditions including antenna and reactor geometry. The antenna radius had a significant influence on the plasma state and axial ion flux distribution.

  • PDF

A Far-UV Study in Taurus-Auriga-Perseus(TPA) Complex

  • Lim, Tae-Ho;Min, Kyung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.80.2-80.2
    • /
    • 2012
  • We firstly present the unified Far-UV continuum map of the Taurus-Auriga-Perseus (TPA) complex, one of the largest local associations of dark cloud located in (l, b)=([152,180], [-28, 0]), by merging both FIMS and GALEX. The FUV continuum map shows that dust extinction correlate well with the FUV around the complex. It says strong absorption in the dense Taurus cloud and Auriga cloud. Although the column density of Perseus and California cloud is similar to Taurus' and Auriga's, Perseus and California cloud do not show strong absorption in FUV because they are more distant than Taurus and Auriga cloud. We also present the dust scattering simulation based on Monte Carlo Radiative Transfer technique. Through the result of Monte-Carlo dust scattering simulation and comparing the result with FIMS-GALEX unified map we gain deeper understanding related to the spatial dust distribution of TPA region. As a preliminary result of the simulation we present the most probable front face, thickness, albedo, and asymmetry factor in this region, respectively. Through this work we can show a certain inclination of the spatial dust distribution. During this study we have developed the FUV dust scattering simulation code using Monte-Carlo method. We expect that it will be generally used to simulate dust scattering in the Galaxy.

  • PDF

Analytical and multicoupled methods for optimal steady-state thermoelectric solutions

  • Moreno-Navarro, Pablo;Perez-Aparicio, Jose L.;Gomez-Hernandez, J.J.
    • Coupled systems mechanics
    • /
    • v.11 no.2
    • /
    • pp.151-166
    • /
    • 2022
  • Peltier cells have low efficiency, but they are becoming attractive alternatives for affordable and environmentally clean cooling. In this line, the current article develops closed-form and semianalytical solutions to improve the temperature distribution of Bi2Te3 thermoelements. From the distribution, the main objective of the current work-the optimal electric intensity to maximize cooling-is inferred. The general one-dimensional differential coupled equation is integrated for linear and quadratic geometry of thermoelements, under temperature constant properties. For a general shape, a piece-wise solution based on heat flux continuity among virtual layers gives accurate analytical solutions. For variable properties, another piece-wise solution is developed but solved iteratively. Taking advantage of the formulae, the optimal intensity is directly derived with a minimal computational cost; its value will be of utility for more advanced designs. Finally, a parametric study including straight, two linear, barrel, hourglass and vase geometries is presented, drawing conclusions on how the shape of the thermoelement affects the coupled phenomena. A specially developed coupled and non-linear finite element research code is run taking into account all the materials of the cell and using symmetries and repetitions. These accurate results are used to validate the analytical ones.