• 제목/요약/키워드: Continuously variable damper

검색결과 19건 처리시간 0.022초

반능동형 현가시스템을 위한 연속가변댐퍼의 특성 해석 (Analysis of Continuously Variable Damper Characteristics for Semi-Active Suspension Systems)

  • 허승진;박기홍
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.128-137
    • /
    • 2003
  • Continuously variable damper can yield diverse damping forces for a single damping velocity. It is widely used in the semi-active suspension system since, with right control logics, it can enhance ride comfort compared to the passive damper while not degrading driving safety. A key to the successful design of the continuously variable damper is the knowledge of its complex and nonlinear characteristics. In this paper, research has been done for analyzing characteristics of the continuously variable damper. Various damper components have been investigated and their effects upon the force-velocity characteristics of the damper have been examined. The effects of the damper characteristics change upon ride comfort and driving safety have also been investigated by numerical simulations.

반능동현가장치용 전자제어식 연속가변댐퍼의 모델링 및 동특성 해석 (Modeling and Dynamic Characteristics Analysis of a Continuously Variable Damper with Electro-Hydraulic Pressure Control Valve)

  • 도홍문;홍경태;홍금식
    • 제어로봇시스템학회논문지
    • /
    • 제8권2호
    • /
    • pp.158-166
    • /
    • 2002
  • A mathematical model and dynamic characteristics ova continuously variable damper for semi-active suspen- sion systems are investigated. After analyzing the geometry of a typical continuously variable damper, mathematical models fur individual components including piston, orifices, spring, and valves are first derived and then the flow equations for extension and compression strokes are investigated. To verify the developed mathematical model, the dynamic response of the model are simulated using MATLAB/SIMULINK and are compared with experimental results. The proposed model can be used not only for mechanical components design but also for control system design.

Hardware-in-the-loop 시뮬레이션을 이용한 연속 가변식 반능동 현가 시스템의 차량 동역학적 해석 (Vehicle dynamic analysis of continuously controlled semi-active suspension using hardware-in-the-loop simulation)

  • 황성호;허승진;이교일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1107-1112
    • /
    • 1996
  • A semi-active suspension system with continuously variable damper is greatly expected to be mainly used in the future as a high-performance suspension system due to its cost-effectiveness, light weight, and low energy consumption. To develop the suitable control logic for the semi-active suspension system, the hardware-in-the-loop simulation is performed with the experimental continuously variable damper combined with a quarter-car model. The hardware-in-the-loop simulation results are compared for passive, on/off controlled, and continuously controlled dampers in the aspects of ride comfort and driving safety, assuming each damper to be installed on a vehicle.

  • PDF

Modeling and Dynamic Characteristics Analysis of a Continuously Variable Damper with Electro-Hydraulic Pressure Control Valve

  • Moon, Do-Hong;Chul, Sohn-Hyun;Shik, Hong-Keum
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.174.5-174
    • /
    • 2001
  • In this paper, mathematical modeling and dynamic characteristics analysis of a continuously variable damper used for semi-active suspension systems are investigated. After analyzing the geometry of a typical continuously variable damper, models for various components including piston, orifices, spring, and valves are proposed and the flow equations during expansion and compression strokes are derived. To verify the mathematical models developed, the dynamic characteristics of the models are simulated using MATLAB/SIMULINK and are compared with experimental results. It was confirmed that the developed models represent well the actual damper and can be used for control system design.

  • PDF

반능동현가장치용 리버스 무단연속가변댐퍼의 모델링 및 동특성 해석 (Modeling and Dynamic Characteristics Analysis of a Continuously Variable Damper with Reverse type Semi-active Suspension.)

  • 박재필;최창림;윤영환;최병근;정용길
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.937-941
    • /
    • 2004
  • Since semi-active suspension systems of automobile, of which suspension damper are controlled actively, exhibit high performance with light system weight, low cost and low energy consumption. From this view point, semi-active suspension systems are greatly expected to be in the mainstream of future controlled suspension systems. In this Paper, mathematical modeling and dynamic characteristics analysis of a reverse continuously variable damper and valve used for semi-active suspension systems are investigated. The mathematical model of piston with valve are proposed by IMAGINE/AMESim in the paper. To verify the mathematical model developed, the dynamic characteristics are simulated by IMAGINE/AMESim and are compared with experimental results. It was confirmed that the developed models represent well the actual system and can be used for control system design.

  • PDF

승용차용 연속가변 ER댐퍼의 성능연구 (Performance Investigation of a Continuously Variable ER Damper for Passenger Vehicles)

  • 김기선;장유진;최승복;정재천;서문석;여문수
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.69-77
    • /
    • 1995
  • This paper presents performance investigation of a continuously variable ER(Electro-Rheological) damper for passenger vehicles. A dynamic model of the damper is formulated by incorporating electric field-dependent Bingham properties of the ER fluid. The Bingham properties are experimentally obtained through Couette type electroviscous measurement with respect to two different particle concentrations. The governing equation of the hydraulic model treating three components of fluid resistances;electrode duct flow, check valve flow and piston gap flow, is achieved via the bond graph method. A prototype ER damper is then designed and manufactured on the basis of parameter analysis. The damping forces of the system are experimentally evaluated by changing the intensity of the electric field, the particle concentration and the electrode gap.

  • PDF

연속가변 ER 댐퍼의 제어 및 응답특성 (Control and Response Characteristics of a Continuously Variable ER Damper)

  • 최승복;최영태;박우철;정재천;서문석;여문수
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.164-174
    • /
    • 1996
  • This paper presents control and response characteristics of a continuously variable ER(electrorheological) damper for small-sized vehicles. The ER damper is devised and its governing equation of motion is derived from the bond graph model. The field-dependent yield shear stresses are distilled from experimental investigation on the Bingham property of the ER fluid. The distilled data are incorporated into the governing system model and, on the basis of this model, an appropriate size of the ER damper is manufactured. After evaluating the field-dependent damping performance of the proposed ER damper, the skyhook control algorithm is formulated to achieve desired level of the damping force. The controller is then experimentally implemented and control characteristics of the ER damper are presented in order to demonstrate superior controllability of the damping force. In addition, response characteristics of the damping force with respect to the electric field with fast on-off frequency are provided to show the feasibility of practical application.

  • PDF

무단변속기 장착차량의 발진성능 해석을 위한 시뮬레이션 프로그램의 개발 (A Development of the Simulation Program for Launching Performance of a Passenger Car equipped Continuously Variable Transmission)

  • 김정윤;이장무;여인욱
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.157-166
    • /
    • 1999
  • This paper describes the launching characteristics of a passenger car using a Push-Belt type Continuously Variable Transmission(CVT) which equipped a wet type multi-plate clutch asa starting device and a solid flywheel with a torsional damper for a torsional coupling device. To reduce the torsional vibration of the drive-line , some torsional coupling devices were used for the passenger car equipped CVT having the clutch as a starting device especially . In this study, we developed the computer simulation program to investigate the launching characteristics of a passenger car equipped CVT using the mathematical models of this system. For the mathematical models of the vehicle, the CVT, the we type multi-plate clutch and the torsional damper, we obtained the specification and the necessary data through the reverse engineering of those. For the verification of our analysis, we performed the test of prototype car with different throttle positions at road and dynamometer. The launching characteristics of a passenger car considered here an acceleration performance and an ascending performance.

  • PDF

유기압 현수장치의 반능동 제어 구현에 관한 연구 (Practical Semiactive Control of Hydropnematic Suspension Units)

  • 이윤복;송오섭
    • 한국군사과학기술학회지
    • /
    • 제6권4호
    • /
    • pp.9-21
    • /
    • 2003
  • This paper describes the practical implementation of a semiactive hydropneumatic suspension system to provide the high off-road performance of military tracked vehicles. Real gas behavior of a spring system, frictional forces of joints, and the dynamics of a continuously variable damper are considered. The control system is consisted of two control loops, an outer loop calculates a target spool position which can deliver the required damping force and an inner loop tracks the required spool position. Dynamic tests of the one axis model show that the semiactive suspension system considerably reduces the acceleration as well as velocity and displacement of the sprung mass than the passive one.

연속제어방식의 반능동형 전자제어 현가장치의 가변댐퍼 감쇠력 특성 연구 및 차량 운동성능에 미치는 효과 분석 (A study on the variable damping characteristics of the continuous controlled semi-active suspension system and the effect analysis of the vehicles motion performance)

  • 소상균;조경일
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.190-198
    • /
    • 1999
  • Continuously controlled semi-active suspension system may improve ride and handling properties. Here, as a mechanism to control the fluid flow solenoid valve mechanism is introduced and added to the basic passive damper to create damping forces of the shock absorbers. The system may produce continuously controlled damping forces in both solenoid valve only and combination with passive shock absorber including fluid flow is studied, and then the combined model is added to the full vehicle model to evaluate its ride and handling performance. Finally, the simulation results are compared to the vehicle models having similar suspension system.

  • PDF