• Title/Summary/Keyword: Continuously Variable Transmission(CVT)

Search Result 85, Processing Time 0.029 seconds

Compound CVT with K-H-V Differential Gear and V-belt Drive

  • Kim, Yeon-Su;Choi, Sang-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.5-14
    • /
    • 2005
  • Continuously variable transmission (CVT) mechanisms combine the functions of a K-H-V type differential gear unit and a V-belt type continuously variable unit (CVU). For the 24 different mechanisms, 12 of them are power circulation modes while the other 12 are power split modes. Some useful theoretical formulas related to speed ratio, power flow and efficiency were derived and analyzed. These mechanisms have many advantages: they decrease CVT size and weight, increase overall efficiency, extend speed ratio range, and generate geared neutral. Compound CVTs were developed by combining the power circulation mode and power split mode, which can offer backward motion, geared neutral, underdrive and overdrive.

Characteristics on the Output Coupled Type CVT Combined Differential Gear Unit (차동기어장치를 적용한 출력축 연결방식 무단변속기의 특성해석에 관한 연구)

  • Choi, Sang-Hoon;Kim, Yeon-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.3
    • /
    • pp.205-215
    • /
    • 2001
  • Continuously variable transmission(CVT) mechanisms considered here combine the functions of a 2K-H I type differential gear unit and a V-belt continuously variable unit(CVU). One shaft of the V-belt CVU is connected directly to the differential gear unit and remaining shaft of it is linked to the output shaft. These mechanisms have many advantage which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range, and the generation of geared neutral. In this paper six different mechanisms of output coupled type CVT are proposed. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed, and theoretical analysis are proven by various experiments.

  • PDF

A Study on the Performance of Continuously Variable Transmission composed of V-belt Drive and 2K-H type Differential Gear Unit (2K-H형 차동기어장치와 V-belt를 결합한 무단변속기의 성능에 관한 연구)

  • 박재민;김연수;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.739-742
    • /
    • 1997
  • Continuously variable transmission(CVT) mechanisms are proposed, which can offer a backward mode, a geared neutral, an underdrive mode and an overdriver mode. They are not required of a starting device as a torque converter. CVT mechanisms developed here present two distinct operating modes which are a power circulation mode and a power split mode. The transition of two modes takes place at the particular CVU speed ratio. For these CVT mechanisms, performance analysis related to speed ratio, power ratio and theoretical efficiency are executed.

  • PDF

Basic Theory on a Multi-Mode CVT (다중모드 무단 변속기의 구조이론에 관한 연구)

  • Lee, Jin-Won;Jang, Uk-Jin;Park, Jin-Ho;Park, Yeong-Il;Lee, Jang-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2477-2486
    • /
    • 2000
  • A planetary gear assembly is a key component to combine and/or split a power from the source. With a planetary gear assembly, a continuously variable unit extends its capacity by means of power bra nching mechanism. Power branching with one planetary gear assembly and one continuously variable unit is categorized into 12 basic types. Each type represents peculiar power transmitting characteristics. Additionally, a multi-mode (range) continuously variable transmission can be designed with accompanying clutches. A multi-mode continuously variable transmission changes the path through which the source power is transmitted. Each path has its own features, such as high efficiency. In this paper, some design principles are examined such as, criteria to guarantee the minimum power efficiency, and constraints to guarantee the smooth mode shift after discussing well-known features of multi-mode M mathematically.

Performance Analysis of Compound CVTs with a 2K-HI (2K-HI 형식 복합형 무단변속기의 성능실험)

  • Park J.M.;Kim Y.S.;Lee S.H.;Choi S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1345-1348
    • /
    • 2005
  • We designed the compound CVT (Continuously Variable Transmissions) by combining power circulation mode CVT and power split mode CVT, which have been proposed for connecting 2K-H I differential gear to the V- belt type CVU (Continuously Variable Unit), as an input coupled type. With the designed compound CVT, we carried out theoretical analysis and performance experiments. We proved that the compound CVT had a better performance than either of the power circulation mode or power split mode.

  • PDF

Performance Efficiency of Compound CVTs with a 2K-H II (2K-H II 형식 복합형 무단변속기의 효율실험)

  • Park J.M.;Kim Y.S.;Lee S.H.;Choi S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.670-673
    • /
    • 2005
  • We designed the compound CVT (Continuously Variable Transmissions) by combining power circulation mode CVT and power split mode CVT, which have been proposed for connecting 2K-H II differential gear to the V- belt type CVU (Continuously Variable Unit), as an input coupled type. With the designed compound CVT, we carried out theoretical analysis and performance experiments. We proved that the compound CVT had a better performance than either of the power circulation mode or power split mode.

  • PDF

Development of CVTs Composed of a 2K-H I Type Differential Gear Unit and a V-belt Drive (2K-H형 I 형식 차동기어장치와 V-belt 전동장치를 결합한 무단변속기의 개발)

  • Kim, Yeon-Su;Choi, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1060-1068
    • /
    • 2002
  • Compound continuously variable transmission(CVT) mechanisms are proposed, which can offer a backward mode, a geared neutral, an underdrive mode and an overdrive mode. They are composed of a 2K-H I type differential gear unit, a V-belt type continuously variable unit(CVU), a few friction clutches and gears, and not required of a starting device as a torque converter. Compound CVT mechanisms developed here present two distinct operating modes which are a power circulation mode and a power split mode. The transition of two modes takes place at the particular CVU speed ratio. For these CVT mechanisms, performance analysis related to speed ratio, power ratio and efficiency are executed and proven by experimental studies.

Design of CVT Composed of a K-H-V type Differential Gear Unit and a V-Belt Drive (K-H-V형 차동기어장치와 V-벨트식 기구를 결합한 무단변속기의 설계)

  • 김연수;박재민;정찬길;최상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.799-802
    • /
    • 2002
  • Continuously variable transmission(CVT) mechanisms considered here combine the functions of a K-H-V type differential gear unit and a V-belt type continuously variable unit(CVU). As combining the functions of a K-H-V type differential gear unit and a V-belt type CVU, 24 different mechanisms are presented. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed. These mechanisms have many advantages which are the decrease of CVT size, the increase of overall efficiency, the extension of speed ratio range, and the generation of geared neutral.

  • PDF

Improving Vehicle Driving Stability by Controlling CVT and Brake Force (CVT 및 BrakeForce 제어를 통한 차량 주행 안정성 향상)

  • 조현욱;이승종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.305-308
    • /
    • 2002
  • The mechanics, electronics and manufacturing technology have been developed rapidly. Nowadays vehicle stability becomes more and more important then ABS (Anti-lo7k Brake System), ASR (Anti-Slip Regulator), TCS, (Traction Control System), ESP (Electronic Stability Program), and VDC (Vehicle Dynamic Control) which actively control the vehicle stability actively has been improved. In this study, instead of automatic transmission, CVT (Continuously Variable Transmission) is used because of the continuously gear ratio changes. It can effectively transfer the torque from engine to tire more than other gear transmission. The modeling is simplified assuming that there are no resistance parameters.

  • PDF

Continuously Variable Transmission Composed of a V-Belt Drive and a 2K-H II Type Differential Cear Unit (V-벨트식 변속장치와 2K-H ll형식 차등기어장치의 복합형 무단변속기)

  • Kim, Yeon-Su;Choi, Sang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1495-1505
    • /
    • 2002
  • As combining the functions of a 2K-H B type differential gear unit and a V-belt type continuously variable unit(CVU), 16 different mechanisms are presented. Some useful theoretical formula related to speed ratio, power flow and efficiency are derived and analyzed. Continuously variable transmission(CVT) mechanisms are proposed, which can of ffr a backward mode, a geared neutral, an underdrive mode and an overdrive mode. They are not required of a starting device as a torque converter. CVT mechanisms developed here present two distinct operating modes which are a power circulation mode and a power split mode. The transition of two modes takes place at the particular CVU speed ratio. For these CVT mechanisms, performance analysis related to speed ratio, power ratio and theoretical efficiency are executed.