• Title/Summary/Keyword: Continuous wall

Search Result 303, Processing Time 0.023 seconds

NEAR-WALL GRID DEPENDENCY OF CFD SIMULATION FOR A SUBCOOLED BOILING FLOW USING WALL BOILING MODEL (벽 비등모델을 이용한 과냉비등 유동에 대한 CFD 모의계산에서 벽 인접격자의 영향)

  • In, W.K.;Shin, C.H.;Chun, T.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.24-31
    • /
    • 2010
  • boiling flow in vertical tube. The multiphase flow model used in this CFD analysis is the two-fluid model in which liquid(water) and gas(vapour) are considered as continuous and dispersed fluids, respectively. A wall boiling model is also used to simulate the subcooled boiling heat transfer at the heated wall boundary. The diameter and heated length of tube are 0.0154 m and 2 m, respectively. The system pressure in tube is 4.5 MPa and the inlet subcooling is 60 K. The near-wall grid size in the non-dimensional wall unit for lqiuid phase ($y^+_{w,l}$) was examined from 101 to 313 at the outlet boundary. The CFD calculations predicted the void distributions as well as the liquid and wall temperatures in tube. The predicted axial variations of the void fraction and the wall temperature are compared with the measured ones. The CFD prediction of the wall temperature is shown to slightly depend on the near-wall grid size but the axial void prediction has somewhat large dependency. The CFD prediction was found to show a better agreement with the measured one for the large near-wall grid, e.g., $y^+_{w,l}$ > 300 at the tube exit.

Optimum Design of Counterforted Wall Using Mixed Discrete Optimization Method (혼합이산형최적화기법을 이용한 뒷부벽식 옹벽의 최적설계)

  • Lee, Seo-Young;Kim, Jong-Ok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.129-135
    • /
    • 2001
  • The optimum design problems for the design of counterforted wall were formulated and computer programing to solve these problems were developed in this study. Both discrete optimization and continuous optimization method were applied to the design of counterforted wall and the results of these optimization methods were compared each other.

  • PDF

Right Atrial Free Wall Rupture due to Blunt Cardiac Trauma - A Case Report - (외상성 우심방 파열 1례 보)

  • 김요한
    • Journal of Chest Surgery
    • /
    • v.20 no.2
    • /
    • pp.427-431
    • /
    • 1987
  • A case is presented of a steering wheel Injury to the chest which developed right atrial free wall rupture and cardiac tamponade without rib fractures or hemo-pneumothorax. A 30 year old man who sustained, blunt chest trauma by steering wheel injury to his chest developed right atrial rupture and cardiac tamponade. Pericardiocentesis was performed and cardiac tamponade was confirmed. After a median sternotomy, large right atrial free wall laceration [about 8cm] was noted. He was placed on cardiopulmonary bypass. The laceration wound of right atrium was closed with a 2 rows of continuous suture. Recovery was uneventful. The patient has returned to his previous level of activity.

  • PDF

Influence analysis of continuous pile walls on the behavior of a soil tunnel at the shallow depth through a parametric study (민감도 분석을 통한 주열식벽체가 저토피 토사터널 거동에 미치는 영향 분석)

  • You, Kwang-Ho;Yoon, Woo-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.75-89
    • /
    • 2014
  • In recent years, utilization of underground space has been increasing in various parts of the world. In particular, open-cut method is usually applied to the shallow depth excavation. However some problems such as extreme traffic congestion and unstability of adjacent structures etc. might occur. In order to cope with these problems, the M-CAM (Modified Cellular Arch Method) method was proposed to excavate soil tunnels at shallow depth with secured enough stability and minimized construction period. In this study, sensitivity analysis was performed to predict the influence of the size of CPW(Continuous Pile Wall) and ground conditions on the behavior of the tunnel. First of all, embedded depth and diameter (or thickness) of CPW, coefficient of lateral earth pressure, and ground conditions were selected as parameters that could affect tunnel stability. Meanwhile, FLAC 2D based on finite difference method was used for numerical analysis. As a result of this study, it was checked out that embedded depth among sizes of CPW had a greatest influence on the stability of a tunnel.

Analysis of Local Wall Thinning around the Extraction Steam Entrance for the 6th Feedwater Heater Shell in the Nuclear Power Plants (원전 6단 급수가열기 추기증기 입구노즐 주변의 동체 국부 감육 원인 분석)

  • Song, Seok-Yoon;Kim, Hyung-Nam
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.54-62
    • /
    • 2009
  • The feedwater heaters are Critical components in a nuclear power plant. As the operation years of heaters go by, the maintenance costs required for continuous operation increase. When the carbon steel components in nuclear make contact with running fluid, the wall thinning caused by FAC (flow accelerated corrosion) can be generated. Local wall thinning is inevitable at the area around wet steam entrance to be attacked due to the long term operation. Sometimes the shell with thinned wall is eventually ruptured. To identify the relationship between the local wall thinning and fluid behavior of the feedwater heater, the practical data of a plant, which were based on ultrasonic thickness measurement tests, were analyzed and CFD(Computed Fluid Dynamics) analyses were performed.

Discontinuous deformation analysis for reinforced concrete frames infilled with masonry walls

  • Chiou, Yaw-Jeng;Tzeng, Jyh-Cherng;Hwang, Shuenn-Chang
    • Structural Engineering and Mechanics
    • /
    • v.6 no.2
    • /
    • pp.201-215
    • /
    • 1998
  • The structural behavior of reinforced concrete frame infilled with a masonry wall is investigated by the method of discontinuous deformation analysis (DDA). An interface element is developed and it is incorporated into DDA to analyze the continuous and discontinuous behavior of the masonry structure. The numerical results are compared with previous research and possess satisfactory agreement. Then the structural behavior and stress distribution of a reinforced concrete frame infilled with a masonry wall subjected to a horizontal force are studied. In addition, the justification of equivalent strut is assessed by the distribution of principal stresses. The results show that the behavior of the masonry structure is highly influenced by the failure of mortar. On the basis of the distribution of principal stress of the masonry wall in the reinforced concrete frame, the equivalent strut can be approximately substituted for the masonry wall without separation and opening. However, the application of equivalent strut to the masonry wall with separation and opening needs further study.

The Continuous Pyrolysis of Waste Polystyrene using Wetted-Wall Type Reactor (Wetted-Wall Column 형 반응기를 이용한 폐 EPS 연속 열분해반응)

  • Han, Myung Sook;Han, Myung Wan;Yoon, Byung Tae;Kim, Seong Bo;Choi, Myoung Jae
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.396-399
    • /
    • 2007
  • Organic residue and carbonized solid producing from the thermal degradation gave a influence on oil conversion, formation of styrene and side products such as ${\alpha}-methyl$ styrene, ethyl benzene, dimer. Thus, new reaction system using wetted-wall type reactor was proposed and examined on influence of various parameters such as reaction temperature, feeding rate and removal velocity of formed vapor. Optimum condition were obtained from continuous thermal degradation using wetted-wall type reactor and styrene was continuously obtained as the yield up 65%.

Approximate Analysis of Shear Wall-Frame Structure For Seismic Design (전단벽-골조 시스템의 내진설계를 위한 근사해석법)

  • Yoo, Suk-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.99-106
    • /
    • 2019
  • A wall-frame structure resists horizontal load by the interaction between the flexural mode of the shear wall and the shear mode of the frame, which implies that the frame deflects only by reverse bending of the columns and girders, and that the columns are axially rigid. However, as the height of frame increases the shear mode of frame changes to flexural mode, which is due to the extension and shortening of the columns. An approximate hand method for estimating horizontal deflection and member forces in high-rise shear wall-frame structures subjected to horizontal loading is presented. The method is developed from the continuous medium theory for coupled walls and expressed in non-dimensional structural parameters. It accounts for bending deformations in all individual members as well as axial deformations in the columns. The deformations calculated from the presented approximate method and matrix analysis by computer program are compared. The presented approximate method is more accurate for the taller structures.

Input Dimension Reduction based on Continuous Word Vector for Deep Neural Network Language Model (Deep Neural Network 언어모델을 위한 Continuous Word Vector 기반의 입력 차원 감소)

  • Kim, Kwang-Ho;Lee, Donghyun;Lim, Minkyu;Kim, Ji-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.3-8
    • /
    • 2015
  • In this paper, we investigate an input dimension reduction method using continuous word vector in deep neural network language model. In the proposed method, continuous word vectors were generated by using Google's Word2Vec from a large training corpus to satisfy distributional hypothesis. 1-of-${\left|V\right|}$ coding discrete word vectors were replaced with their corresponding continuous word vectors. In our implementation, the input dimension was successfully reduced from 20,000 to 600 when a tri-gram language model is used with a vocabulary of 20,000 words. The total amount of time in training was reduced from 30 days to 14 days for Wall Street Journal training corpus (corpus length: 37M words).