• Title/Summary/Keyword: Continuous column leaching tests

Search Result 5, Processing Time 0.018 seconds

Potential Environmental Influences in Soil by Accidental Fluorine (F) Leakage, Using Leaching Test (용출시험을 통한 불산 누출사고지역의 토양 내 불소(F)의 거동특성)

  • Kim, Doyoung;Lee, Junseok;Kwon, Eunhye;Lee, Hyun A;Yoon, Hye-On;Lee, Sanghoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.234-239
    • /
    • 2015
  • Various leaching tests were applied to the soil affected by accidental leakage of HF in an industrial area in Korea. Three different leaching methods including pH-stat, continuous batch leaching, and column tests were adopted to assess leaching characteristics and mobility of fluorine(F) in soil and the potential risks to ecosystem. Both natural and spiked samples were used for the leaching tests. F concentrations in the batch tests increased by leaching rapidly in the early stage of leaching and then maintained rather constant levels. Column leaching test also show similar result to that of the batch test. pH also controlled the leaching behavior of the soil. With increasing pH, more F was released in the pH-stat test. This is mainly due to the competition and exchange with hydroxyl ions, as pH increase to the alkaline range. Most of the F released by the accident seem to have removed in the very early stage of leaching, whereas some natural proportion from soil minerals are thought to have been released very slowly. Therefore, little F released during the accident remained, based on the results of this study on the samples after two years of the accident. We could conclude that soil contaminated by external effects such as chemical accidents should be managed immediately, especially with F.

A Study on the Utilization of Organic Mixed Soil as Earthwork Materials (유기질 혼합토의 토공재로서의 활용에 관한 연구)

  • Park, Heung-Gyu;Koo, Je-Min
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.29-35
    • /
    • 2002
  • In order to establish the applicability of organic soil as Earthwork Materials, this research conducts a battery of laboratory tests using two kinds of test materials. The test material A, a mixture of sand and organic soil, and the test material B, a mixture of granite soil and organic soil varying the proportion of organic soil through 5%, 10%, 20%, 30%, 40%, and 50% are used. Continuous column leaching tests of the test materials A and B indicate that their COD value is substantially smaller than that of pure organic soil, the COD value of the early leached water slightly exceeds the standard level for leached water. The COD value after 4 hours of leaching becomes very small. The mixed soil of sand and organic soil is considered usable as embankment materials when the proportion of organic soil is up to 40% with the corresponding concentration ratio of organic contents is less than 11.3%. Similarly, the mixed soil of granite soil and organic soil is considered usable as earthwork materials when the proportion of organic soil is less than 30% with the corresponding concentration ratio of organic contents is less than 16.4%.

  • PDF

Environmental Characteristics of Waste Tire for Use as Soil Reinforcement (지반보강재로서 폐타이어 사용에 따른 환경영향 분석)

  • Cho, Jinwoo;Lee, Yongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.61-68
    • /
    • 2013
  • This paper presents an experimental results on the environmental characteristics of waste tire. Experimental program includes a set of laboratory leaching tests and field pilot test for leachate analysis. Laboratory tests were conducted to illustrate how properties such as TOC, pH, turbidity and Zn change with tire sizes and drain conditions. In field pilot test, water samples were collected form a drainage system installed below the tire-reinforced retaining wall and analyzed for chemical quality. Laboratory leaching tests performed on various particle sizes of waste tire indicated that as tire size is increased, the concentration of leachate is decreased. In continuous flow column tests, the concentration of leachate decreased with the number of exposure periods or pore volumes flushed through the waste tire. However, during pause flow column tests, the concentration of leachates were increased with time. Field monitoring of effluent indicated that no significant adverse effects on ground water quality had occurred over a period of 12 months.

Investigation of the Rice Plant Transfer and the Leaching Characteristics of Copper and Lead for the Stabilization Process with a Pilot Scale Test (논토양 안정화 현장 실증 시험을 통한 납, 구리의 용출 저감 및 벼로의 식물전이 특성 규명)

  • Lee, Ha-Jung;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.255-264
    • /
    • 2012
  • The stabilization using limestone ($CaCO_3$) and steel making slag as the immobilization amendments for Cu and Pb contaminated farmland soils was investigated by batch tests, continuous column experiments and the pilot scale feasibility study with 4 testing grounds at the contaminated site. From the results of batch experiment, the amendment with the mixture of 3% of limestone and 2% of steel making slag reduced more than 85% of Cu and Pb compared with the soil without amendment. The acryl column (1 m in length and 15 cm in diameter) equipped with valves, tubes and a sprinkler was used for the continuous column experiments. Without the amendment, the Pb concentration of the leachate from the column maintained higher than 0.1 mg/L (groundwater tolerance limit). However, the amendment with 3% limestone and 2% steel making slag reduced more than 60% of Pb leaching concentration within 1 year and the Pb concentration of leachate maintained below 0.04 mg/L. For the testing ground without the amendment, the Pb and Cu concentrations of soil water after 60 days incubation were 0.38 mg/L and 0.69 mg/l, respectively, suggesting that the continuous leaching of Cu and Pb may occur from the site. For the testing ground amended with mixture of 3% of limestone + 2% of steel making slag, no water soluble Pb and Cu were detected after 20 days incubation. For all testing grounds, the ratio of Pb and Cu transfer to plant showed as following: root > leaves(including stem) > rice grain. The amendment with limestone and steel making slag reduced more than 75% Pb and Cu transfer to plant comparing with no amendment. The results of this study showed that the amendment with mixture of limestone and steel making slag decreases not only the leaching of heavy metals but also the plant transfer from the soil.

Feasibility Study of the Stabilization for the Arsenic Contaminated Farmland Soil by Using Amendments at Samkwang Abandoned Mine (삼광광산 주변 비소 오염 토양에 대한 안정화 공법 적용성 평가)

  • Lee, Jung-Rak;Kim, Jae-Jung;Cho, Jin-Dong;Hwang, Jin-Yeon;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.217-228
    • /
    • 2011
  • The feasibility study for the stabilization process using 5 amendments was performed to quantify As-immobilization efficiency in farmland soils around Samkwang abandoned mine, Korea. For the batch experiments, with 2% and 3% of granular lime(2-5 mm in diameter), leaching concentration of As from the soil decreased by 86% and 95% respectively, compared to that without the amendment. When 5% and 10% of granular limestone was added in the soil, As concentration decreased by 82% and 95%, showing that lime and limestone has a great capability to immobilize As in the soil. From the results of batch experiments, continuous column(15 cm in dimeter and 100 cm in length) tests using granular lime and limestone as amendments was performed. Without the amendment, As concentration from the effluent of the column ranged from 167 ${\mu}g$/L to 845 ${\mu}g$/L, which were higher than Korea Drinking Water Limit(50 ${\mu}g$/L). However, only with 1% and 2% of lime, As concentration from the column dramatically decreased by 97% for 9 years rainfall and maintained below 50 ${\mu}g$/L. With 5% of limestone and the mixed amendment(1% of lime + 2% of limestone), more than 95% diminution of As leaching from the column occurred within I year rainfall and maintained below 20 ${\mu}g$/L, suggesting that the capability of limestone to immobilize As in the farmland soil was outstanding and similar to that of lime. Results of experiments suggested that As stabilization process using limestone could be more available to immobilize As from the soil than using lime because of low pH increase and thus less harmful side effect.