본 논문에서는 형태소 그래프를 정의하고 이를 한국어 연속 음성 인식의 결과로서 사용함과 동시에 한국어의 자연어 처리를 위한 지식 표현 방법으로 사용한다. 또한 형태소 그래프를 연속 음성 인식과정에서 효율적으로 생성하는 알고리즘으로서 Tree-Trellis 탐색 알고리즘을 소개한다. 한국어 연속 음성 인식기는 HMM 인식기를 사용하며 탐색 알고리즘 또한 HMM 음소 인식기의 사용을 전제로 한다. 실험 DB로는 한국과학기술원 통신연구실에서 제작한 3000 단어급의 무역상담관련 DB를 사용하였다.
본 논문에서는 HMM 기반의 연속음성인식에서 음향모델의 최적화 기법을 논한다. 대부분의 음성인식 시스템에서 HMM 상태별로 동일한 개수의 가우시안 성분 (mixture component)을 사용해 왔다. 그러나, 음향 모델링에 사용되는 데이터 샘플의 개수는 HMM상태별로 다르므로 이에 따른 최적화를 수행할 경우 모델 파라미터의 개수를 효과적으로 줄일 수 있을 뿐 아니라, 디코딩 단계에서 음성인식기의 속도 및 인식 성능 개선이 기대된다. 본 연구에서 제안한 방법은 기존에 알려진 MDL (minimum description length) 기반의 음향모델 최적화 방법에서 가우시안 성분들의 통합과정에 가우시안 성분의 가중치 정보 (mixture weight)를 반영하도록 개선하였다. 인식 실험 결과, 제안한 방법은 가우시안 성분의 가중치를 반영하지 않는 기존 방법에 비해 향상된 최적화 성능을 보임을 확인할 수 있었다.
한국어 숫자음은 단음절이며 연결된 숫자음 사이에 연음현상의 영향 때문에 한국어 연결 숫자음의 인식방법으로 반음절에 기반한 모델들이 제시되어 왔다. 기존에 제안된 반음절이나 반음절+반음절의 인식모델을 이용한 방법에서는 아직까지 우수한 인식성능을 보이지 못하고 있다. 본 논문에서는 확장된 문맥종속 반음절 모델을 이용한 한국어 4 연숫자음 인식방법을 제안한다. 실험에서 연결숫자음은 SiTEC의 4 연숫자음 데이터 베이스를 사용하였으며 학습과 인식방법으로는 HTK 3.0의 C-HMM을 이용하였다. 기존의 방법들과 인식율을 비교해 본 결과, 92%의 비교적 우수한 인식성능을 보였다.
본 논문에서는 대어휘 연속음성인식을 위한 확률 발음사전 모델에 대해서 제안하였다. 확률 발음 사전은 HMM과 같이 단위음소 상태의 Markov chain으로 이루어져 있으며, 각 음소 상태들은 음소들에 대한 확률 분포 함수로 표현된다. 확률 발음 사전의 생성은 음성자료와 음소 모델을 이용하여 음소 단위의 분할과 인식을 통해서 자동으로 생성되게 된다. 제안된 확률 발음 사전은 단어내 변이와 단어간 변이를 모두 효과적으로 표현할 수 있었으며, 인식 모델과 인식기의 특성을 반영함으로써 전체 인식 시스템의 성능을 보다 높일 수 있었다. 3000 단어 연속음성인식 실험 결과 확률 발음 사전을 사용함으로써 표준 발음 표기를 사용하는 인식 시스템에 비해 단어 오류율은 23.6%, 문장 오류율은 10% 정도를 감소시킬 수 있었다.
In this paper, in order to protect music copyrights, we propose a music identification system which is scalable to the number of pieces of registered music and robust to signal-level variations of registered music. For its implementation, we define the new concepts of 'music word' and 'music phoneme' as recognition units to construct 'music acoustic models'. Then, with these concepts, we apply the HMM-based framework used in continuous speech recognition to identify the music. Each music file is transformed to a sequence of 39-dimensional vectors. This sequence of vectors is represented as ordered states with Gaussian mixtures. These ordered states are trained using Baum-Welch re-estimation method. Music files with a suspicious copyright are also transformed to a sequence of vectors. Then, the most probable music file is identified using Viterbi algorithm through the music identification network. We implemented a music identification system for 1,000 MP3 music files and tested this system with variations in terms of MP3 bit rate and music speed rate. Our proposed music identification system demonstrates robust performance to signal variations. In addition, scalability of this system is independent of the number of registered music files, since our system is based on HMM method.
We propose a novel method to incorporate temporal correlations into a speech recognition system based on the conventional hidden Markov model. With the proposed method using the extended logarithmic pool, we approximate a joint conditional PD by separate conditional PD's associated with respective components of conditions. We provide a constrained optimization algorithm with which we can find the optimal value for the pooling weights. The results in the experiments of speaker-independent continuous speech recognition with frame correlations show error reduction by 13.7% with the proposed methods as compared to that without frame correlations.
Since computing the log-likelihood of Gaussian mixture density is a major computational burden for the speech recognizer based on the continuous HMM, several techniques have been proposed to reduce the number of mixtures to be used for recognition. In this paper, we propose a modified Bucket Box Intersection (BBI) algorithm, in which two relative thresholds are employed: one is the relative threshold in the conventional BBI algorithm and the other is used to reduce the number of the Gaussian boxes which are intersected by the hyperplanes at the boxes' edges. The experimental results show that the proposed algorithm reduces the number of Gaussian mixtures by 12.92% during the recognition phase with negligible performance degradation compared to the conventional BBI algorithm.
본 논문은 연속밀도 은닉마코프모델에서 각 상태별 혼합성분 개수를 결정하는 방법을 제안한다. 지금까지의 대부분의 연구가 연속밀도 은닉마코프모델에서 화자의 스펙트럼 특성에 상관없이 각 상태별 동일한 혼합성분 개수를 적용하였다. 이런 접근방법은 많은 계산량을 요구할 뿐만 아니라, 각 상태의 특성을 무시하고 있기 때문에 각 상태별 음성신호의 정확한 모델링을 할 수 없다. 따라서 본 논문에서 제안한 연속밀도 은닉마코프모델의 파라미터 추정은 각 상태별 혼합성분에 대한 발생 확률값에 따라서 결정하였다. 또한 혼합성분의 개수를 줄이는 과정에서 신호의 상관성을 줄이고 시스템의 전체적인 안정성을 얻기 위해서 주성분 분석을 이용하였다. 제안한 방법은 기존의 은닉마코프모델에 비해서 평균 10% 작은 혼합성분 개수를 이용했을 때를 기준으로 실험하였다. 실험결과에서 혼합성분 결정만을 적용했을 때 거의 비슷한 성능을 얻을 수 있었다. 그리고 주성분 분석을 이용했을 때, 특정벡터가 16 차일 때 평균 0.35%의 성능감소가 일어났지만, 25 차에서는 평균 0.65%의 성능개선을 얻을 수 있었다.
Body gesture Recognition has been one of the interested research field for Human-Robot Interaction(HRI). Most of the conventional body gesture recognition algorithms used Hidden Markov Model(HMM) for modeling gestures which have spatio-temporal variabilities. However, HMM-based algorithms have difficulties excluding meaningless gestures. Besides, it is necessary for conventional body gesture recognition algorithms to perform gesture segmentation first, then sends the extracted gesture to the HMM for gesture recognition. This separated system causes time delay between two continuing gestures to be recognized, and it makes the system inappropriate for continuous gesture recognition. To overcome these two limitations, this paper suggests primitive body model encoding, which performs spatio/temporal quantization of motions from human body model and encodes them into predefined primitive codes for each link of a body model, and Selective/Asynchronous Input-Parallel State machine(SAI-PSM) for multiple-simultaneous gesture recognition. The experimental results showed that the proposed gesture recognition system using primitive body model encoding and SAI-PSM can exclude meaningless gestures well from the continuous body model data, while performing multiple-simultaneous gesture recognition without losing recognition rates compared to the previous HMM-based work.
본 논문에서는 음성 패턴을 효율적으로 모델링하고자 분절 특징(segmental feature)을 이 용하여 은닉 마코프 모델(hidden markov model)의 일반적인 형식에 기반한 새로운 모수적 궤적 모델 (parametric trajectory model)을 제안한다. 일반적으로 벡터의 열로써 표현되는 분절은 관측 열의 궤적(trajectory)으로 표현된다. 이 궤적은 연속적인 프레임들의 전이 정보(transitional information)를 표현하는 디자인 행렬을 이용하여 얻어지며, 다항식의 회귀 함수(polynomial regression function)로써 나타낼 수 있다. 이러한 궤적을 HMM에 적용하기 위해서 프레임 특징 대신 분절의 특성 을 표현하는 궤적으로 대치하고 우도(likelihood) 계산에 궤적들의 비교에 의한 확률 값을 반영시켜야 한다. 본 논문에서는 궤적간의 유사도를 측정하는 분절 우도(segment likelihood)와 모델을 구성하는 궤적변수의 추정 알고리즘을 제안한다. 임의의 분절에 대한 관측 확률은 제안된 분절 우도와 궤적의 추정 오차(estimation error of trajectories)의 곱으로써 표현된다. 궤적의 추정 오차는 상태에서 주어진 분절 우도의 가중치로 표현될 수 있으며, 이 가중치는 궤적과 대응되는 분절의 적합도를 표현하는 확률을 나타낸다. 본 논문에서 제 안된 모델은 일반적 인 HMM과 모수적 궤적 모델의 일반화(generalization) 또는 확장(extension) 모델로 생각될 수 있다. 본 모델의 성능을 평가하기 위하여 TIMIT 데이터에 기반한 실험을 한 결과, 분절 길이(segment length)와 회귀 차수(regression order)가 변할수록 일반적인 HMM에 비하여 뚜렷한 성능향상이 있음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.