• 제목/요약/키워드: Continuous HMM

검색결과 124건 처리시간 0.021초

HMM에 기반한 연속음성인식에서의 형태소 그래프 생성 (Morpheme Graph Generation with HMM based Continuous Speech Recognition)

  • 최준기;이근배;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.500-504
    • /
    • 1997
  • 본 논문에서는 형태소 그래프를 정의하고 이를 한국어 연속 음성 인식의 결과로서 사용함과 동시에 한국어의 자연어 처리를 위한 지식 표현 방법으로 사용한다. 또한 형태소 그래프를 연속 음성 인식과정에서 효율적으로 생성하는 알고리즘으로서 Tree-Trellis 탐색 알고리즘을 소개한다. 한국어 연속 음성 인식기는 HMM 인식기를 사용하며 탐색 알고리즘 또한 HMM 음소 인식기의 사용을 전제로 한다. 실험 DB로는 한국과학기술원 통신연구실에서 제작한 3000 단어급의 무역상담관련 DB를 사용하였다.

  • PDF

향상된 MDL 기법에 의한 음향모델의 최적화 연구 (A Study on Improved MDL Technique for Optimization of Acoustic Model)

  • 조훈영;김상훈
    • 한국음향학회지
    • /
    • 제29권1호
    • /
    • pp.56-61
    • /
    • 2010
  • 본 논문에서는 HMM 기반의 연속음성인식에서 음향모델의 최적화 기법을 논한다. 대부분의 음성인식 시스템에서 HMM 상태별로 동일한 개수의 가우시안 성분 (mixture component)을 사용해 왔다. 그러나, 음향 모델링에 사용되는 데이터 샘플의 개수는 HMM상태별로 다르므로 이에 따른 최적화를 수행할 경우 모델 파라미터의 개수를 효과적으로 줄일 수 있을 뿐 아니라, 디코딩 단계에서 음성인식기의 속도 및 인식 성능 개선이 기대된다. 본 연구에서 제안한 방법은 기존에 알려진 MDL (minimum description length) 기반의 음향모델 최적화 방법에서 가우시안 성분들의 통합과정에 가우시안 성분의 가중치 정보 (mixture weight)를 반영하도록 개선하였다. 인식 실험 결과, 제안한 방법은 가우시안 성분의 가중치를 반영하지 않는 기존 방법에 비해 향상된 최적화 성능을 보임을 확인할 수 있었다.

반음절 문맥종속 모델을 이용한 한국어 4 연숫자음 인식에 관한 연구 (A Study on Korean 4-connected Digit Recognition Using Demi-syllable Context-dependent Models)

  • 이기영;최성호;이호영;배명진
    • 한국음향학회지
    • /
    • 제22권3호
    • /
    • pp.175-181
    • /
    • 2003
  • 한국어 숫자음은 단음절이며 연결된 숫자음 사이에 연음현상의 영향 때문에 한국어 연결 숫자음의 인식방법으로 반음절에 기반한 모델들이 제시되어 왔다. 기존에 제안된 반음절이나 반음절+반음절의 인식모델을 이용한 방법에서는 아직까지 우수한 인식성능을 보이지 못하고 있다. 본 논문에서는 확장된 문맥종속 반음절 모델을 이용한 한국어 4 연숫자음 인식방법을 제안한다. 실험에서 연결숫자음은 SiTEC의 4 연숫자음 데이터 베이스를 사용하였으며 학습과 인식방법으로는 HTK 3.0의 C-HMM을 이용하였다. 기존의 방법들과 인식율을 비교해 본 결과, 92%의 비교적 우수한 인식성능을 보였다.

확률 발음사전을 이용한 대어휘 연속음성인식 (Stochastic Pronunciation Lexicon Modeling for Large Vocabulary Continous Speech Recognition)

  • 윤성진;최환진;오영환
    • 한국음향학회지
    • /
    • 제16권2호
    • /
    • pp.49-57
    • /
    • 1997
  • 본 논문에서는 대어휘 연속음성인식을 위한 확률 발음사전 모델에 대해서 제안하였다. 확률 발음 사전은 HMM과 같이 단위음소 상태의 Markov chain으로 이루어져 있으며, 각 음소 상태들은 음소들에 대한 확률 분포 함수로 표현된다. 확률 발음 사전의 생성은 음성자료와 음소 모델을 이용하여 음소 단위의 분할과 인식을 통해서 자동으로 생성되게 된다. 제안된 확률 발음 사전은 단어내 변이와 단어간 변이를 모두 효과적으로 표현할 수 있었으며, 인식 모델과 인식기의 특성을 반영함으로써 전체 인식 시스템의 성능을 보다 높일 수 있었다. 3000 단어 연속음성인식 실험 결과 확률 발음 사전을 사용함으로써 표준 발음 표기를 사용하는 인식 시스템에 비해 단어 오류율은 23.6%, 문장 오류율은 10% 정도를 감소시킬 수 있었다.

  • PDF

저작권 보호를 위한 HMM기반의 음악 식별 시스템 (HMM-based Music Identification System for Copyright Protection)

  • 김희동;김도현;김지환
    • 말소리와 음성과학
    • /
    • 제1권1호
    • /
    • pp.63-67
    • /
    • 2009
  • In this paper, in order to protect music copyrights, we propose a music identification system which is scalable to the number of pieces of registered music and robust to signal-level variations of registered music. For its implementation, we define the new concepts of 'music word' and 'music phoneme' as recognition units to construct 'music acoustic models'. Then, with these concepts, we apply the HMM-based framework used in continuous speech recognition to identify the music. Each music file is transformed to a sequence of 39-dimensional vectors. This sequence of vectors is represented as ordered states with Gaussian mixtures. These ordered states are trained using Baum-Welch re-estimation method. Music files with a suspicious copyright are also transformed to a sequence of vectors. Then, the most probable music file is identified using Viterbi algorithm through the music identification network. We implemented a music identification system for 1,000 MP3 music files and tested this system with variations in terms of MP3 bit rate and music speed rate. Our proposed music identification system demonstrates robust performance to signal variations. In addition, scalability of this system is independent of the number of registered music files, since our system is based on HMM method.

  • PDF

Frame-Correlated HMM을 이용한 음성 인식 (On the Use of a Frame-Correlated HMM for Speech Recognition)

  • 김남수
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.223-228
    • /
    • 1994
  • We propose a novel method to incorporate temporal correlations into a speech recognition system based on the conventional hidden Markov model. With the proposed method using the extended logarithmic pool, we approximate a joint conditional PD by separate conditional PD's associated with respective components of conditions. We provide a constrained optimization algorithm with which we can find the optimal value for the pooling weights. The results in the experiments of speaker-independent continuous speech recognition with frame correlations show error reduction by 13.7% with the proposed methods as compared to that without frame correlations.

  • PDF

변형된 BBI 알고리즘에 기반한 음성 인식기의 계산량 감축 (Computational Complexity Reduction of Speech Recognizers Based on the Modified Bucket Box Intersection Algorithm)

  • 김건용;김동화
    • 대한음성학회지:말소리
    • /
    • 제60호
    • /
    • pp.109-123
    • /
    • 2006
  • Since computing the log-likelihood of Gaussian mixture density is a major computational burden for the speech recognizer based on the continuous HMM, several techniques have been proposed to reduce the number of mixtures to be used for recognition. In this paper, we propose a modified Bucket Box Intersection (BBI) algorithm, in which two relative thresholds are employed: one is the relative threshold in the conventional BBI algorithm and the other is used to reduce the number of the Gaussian boxes which are intersected by the hyperplanes at the boxes' edges. The experimental results show that the proposed algorithm reduces the number of Gaussian mixtures by 12.92% during the recognition phase with negligible performance degradation compared to the conventional BBI algorithm.

  • PDF

화자인식에서 연속밀도 은닉마코프모델의 혼합밀도 결정방법 (Gaussian Density Selection Method of CDHMM in Speaker Recognition)

  • 서창우;이주헌;임재열;이기용
    • 한국음향학회지
    • /
    • 제22권8호
    • /
    • pp.711-716
    • /
    • 2003
  • 본 논문은 연속밀도 은닉마코프모델에서 각 상태별 혼합성분 개수를 결정하는 방법을 제안한다. 지금까지의 대부분의 연구가 연속밀도 은닉마코프모델에서 화자의 스펙트럼 특성에 상관없이 각 상태별 동일한 혼합성분 개수를 적용하였다. 이런 접근방법은 많은 계산량을 요구할 뿐만 아니라, 각 상태의 특성을 무시하고 있기 때문에 각 상태별 음성신호의 정확한 모델링을 할 수 없다. 따라서 본 논문에서 제안한 연속밀도 은닉마코프모델의 파라미터 추정은 각 상태별 혼합성분에 대한 발생 확률값에 따라서 결정하였다. 또한 혼합성분의 개수를 줄이는 과정에서 신호의 상관성을 줄이고 시스템의 전체적인 안정성을 얻기 위해서 주성분 분석을 이용하였다. 제안한 방법은 기존의 은닉마코프모델에 비해서 평균 10% 작은 혼합성분 개수를 이용했을 때를 기준으로 실험하였다. 실험결과에서 혼합성분 결정만을 적용했을 때 거의 비슷한 성능을 얻을 수 있었다. 그리고 주성분 분석을 이용했을 때, 특정벡터가 16 차일 때 평균 0.35%의 성능감소가 일어났지만, 25 차에서는 평균 0.65%의 성능개선을 얻을 수 있었다.

바디 제스처 인식을 위한 기초적 신체 모델 인코딩과 선택적 / 비동시적 입력을 갖는 병렬 상태 기계 (Primitive Body Model Encoding and Selective / Asynchronous Input-Parallel State Machine for Body Gesture Recognition)

  • 김주창;박정우;김우현;이원형;정명진
    • 로봇학회논문지
    • /
    • 제8권1호
    • /
    • pp.1-7
    • /
    • 2013
  • Body gesture Recognition has been one of the interested research field for Human-Robot Interaction(HRI). Most of the conventional body gesture recognition algorithms used Hidden Markov Model(HMM) for modeling gestures which have spatio-temporal variabilities. However, HMM-based algorithms have difficulties excluding meaningless gestures. Besides, it is necessary for conventional body gesture recognition algorithms to perform gesture segmentation first, then sends the extracted gesture to the HMM for gesture recognition. This separated system causes time delay between two continuing gestures to be recognized, and it makes the system inappropriate for continuous gesture recognition. To overcome these two limitations, this paper suggests primitive body model encoding, which performs spatio/temporal quantization of motions from human body model and encodes them into predefined primitive codes for each link of a body model, and Selective/Asynchronous Input-Parallel State machine(SAI-PSM) for multiple-simultaneous gesture recognition. The experimental results showed that the proposed gesture recognition system using primitive body model encoding and SAI-PSM can exclude meaningless gestures well from the continuous body model data, while performing multiple-simultaneous gesture recognition without losing recognition rates compared to the previous HMM-based work.

모수적 궤적 기반의 분절 HMM을 이용한 연속 음성 인식 (Continuous Speech Recognition based on Parmetric Trajectory Segmental HMM)

  • 윤영선;오영환
    • 한국음향학회지
    • /
    • 제19권3호
    • /
    • pp.35-44
    • /
    • 2000
  • 본 논문에서는 음성 패턴을 효율적으로 모델링하고자 분절 특징(segmental feature)을 이 용하여 은닉 마코프 모델(hidden markov model)의 일반적인 형식에 기반한 새로운 모수적 궤적 모델 (parametric trajectory model)을 제안한다. 일반적으로 벡터의 열로써 표현되는 분절은 관측 열의 궤적(trajectory)으로 표현된다. 이 궤적은 연속적인 프레임들의 전이 정보(transitional information)를 표현하는 디자인 행렬을 이용하여 얻어지며, 다항식의 회귀 함수(polynomial regression function)로써 나타낼 수 있다. 이러한 궤적을 HMM에 적용하기 위해서 프레임 특징 대신 분절의 특성 을 표현하는 궤적으로 대치하고 우도(likelihood) 계산에 궤적들의 비교에 의한 확률 값을 반영시켜야 한다. 본 논문에서는 궤적간의 유사도를 측정하는 분절 우도(segment likelihood)와 모델을 구성하는 궤적변수의 추정 알고리즘을 제안한다. 임의의 분절에 대한 관측 확률은 제안된 분절 우도와 궤적의 추정 오차(estimation error of trajectories)의 곱으로써 표현된다. 궤적의 추정 오차는 상태에서 주어진 분절 우도의 가중치로 표현될 수 있으며, 이 가중치는 궤적과 대응되는 분절의 적합도를 표현하는 확률을 나타낸다. 본 논문에서 제 안된 모델은 일반적 인 HMM과 모수적 궤적 모델의 일반화(generalization) 또는 확장(extension) 모델로 생각될 수 있다. 본 모델의 성능을 평가하기 위하여 TIMIT 데이터에 기반한 실험을 한 결과, 분절 길이(segment length)와 회귀 차수(regression order)가 변할수록 일반적인 HMM에 비하여 뚜렷한 성능향상이 있음을 알 수 있었다.

  • PDF